• Title/Summary/Keyword: Transcription activities

Search Result 453, Processing Time 0.025 seconds

Effects of small group transcription activities on university students' English listening comprehension (소집단 협동 전사활동이 대학생의 영어듣기 능력 향상에 미치는 영향)

  • Han, Sang-Ho
    • English Language & Literature Teaching
    • /
    • v.12 no.1
    • /
    • pp.257-286
    • /
    • 2006
  • This paper investigates the effects of small group collaborative transcription activities on the improvement of university students' English listening ability. Based on the results of pre-tests, a class of 42 students was subdivided into 11 small homogeneous groups of three to four students. Each group was provided with 7 different news items to be transcribed. Means were compared between pre-test and post-test scores, followed by comparison of transcription errors in content and function words. Finally, students' perception and attitudes about the use of small group transcription for improving listening skills were qualitatively analysed and compared with pre- and post test results. It was found that post test scores highly correlated with improvement of listening ability. It was also found that groups of high degree of collaboration showed improvement in listening ability while lack of collaboration contributed to loss of interests in listening. Students who see process more important were found to make more contribution to the group success than those who place more emphasis on the results.

  • PDF

Ethanol-induced Activiationof Transcription Factor NF-$\kappa$B and AP-1 in C6 Glial Cells

  • Park, Jae -Won;Shim, Young-Sup
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.3
    • /
    • pp.209-214
    • /
    • 1999
  • In this study, the effectof ethanol and acetaldehyde on DNA binding activities of NF-$textsc{k}$B and AP-1 were evaluated in C6 rat glial cells. Both NF-$textsc{k}$B and AP-1 are important transcription factors for the expression of various cytokines in glial cells. Our data showed that neither ethanol nor acetaldehyde induced conspicuous cell death of C6 cells at clinically realistic concentrations. When the DNA binding activities of nuclear NF-$textsc{k}$B and AP-1 were estimated using electrophoretic mobility shift assay (EMSA), ethanol(0.3%) or acetaldehyde(1mM) induced transient activation of these transcription factors, which attained peak levels at 4~8 hours and declined to basal levels at 12 hours after treatement . The supershift analysis showed that the increased activities of NF-$textsc{k}$B in ethanol/acetaldehyde-treated C6 cells were due to the preferential induction of p65/p50 heterodimer complex. The DNA binding activities of these transcriptional factors decreased below basal levels when cells were cultured with either ethanol or acetaldehyde for 24 hours, and showed the inhibitory effect of chronic ehtanol /acetaldehyde treatment on the activities of these transsriptional factors. Our data indicate that either ethanol or acetaldehyde can induce functional changes of glial cells throught bi-directional modulation of NF-$textsc{k}$B and AP-1 DNA binding activities.

  • PDF

Sarsasapogenin Increases Melanin Synthesis via Induction of Tyrosinase and Microphthalmia-Associated Transcription Factor Expression in Melan-a Cells

  • Moon, Eun-Jung;Kim, Ae-Jung;Kim, Sun-Yeou
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.340-345
    • /
    • 2012
  • Sarsasapogenin (SAR) is a steroidal sapogenin that is used as starting material for the industrial synthesis of steroids. It has various pharmacological benefits, such as antitumor and antidepressant activities. Since its effect on melanin biosynthesis has not been reported, we used murine melanocyte melan-a cells to investigate whether SAR influences melanogenesis. In this study, SAR significantly increased the melanin content of the melan-a cells from 1 to 10 ${\mu}M$. Based on an enzymatic activity assay using melan-a cell lysate, SAR had no effect on tyrosinase and DOPAchrome tautomerase activities. It also did not affect the protein expression of tyrosinase-related protein 1 and DOPAchrome tautomerase. However, protein levels of tyrosinase and microphthalmia-associated transcription factor were strongly stimulated by treatment with SAR. Therefore, our reports suggest that SAR treatment may induce melanogenesis through the stimulation of tyrosinase and microphthalmia-associated transcription factor expression in melan-a cells.

MiT Family Transcriptional Factors in Immune Cell Functions

  • Kim, Seongryong;Song, Hyun-Sup;Yu, Jihyun;Kim, You-Me
    • Molecules and Cells
    • /
    • v.44 no.5
    • /
    • pp.342-355
    • /
    • 2021
  • The microphthalmia-associated transcription factor family (MiT family) proteins are evolutionarily conserved transcription factors that perform many essential biological functions. In mammals, the MiT family consists of MITF (microphthalmia-associated transcription factor or melanocyte-inducing transcription factor), TFEB (transcription factor EB), TFE3 (transcription factor E3), and TFEC (transcription factor EC). These transcriptional factors belong to the basic helix-loop-helix-leucine zipper (bHLH-LZ) transcription factor family and bind the E-box DNA motifs in the promoter regions of target genes to enhance transcription. The best studied functions of MiT proteins include lysosome biogenesis and autophagy induction. In addition, they modulate cellular metabolism, mitochondria dynamics, and various stress responses. The control of nuclear localization via phosphorylation and dephosphorylation serves as the primary regulatory mechanism for MiT family proteins, and several kinases and phosphatases have been identified to directly determine the transcriptional activities of MiT proteins. In different immune cell types, each MiT family member is shown to play distinct or redundant roles and we expect that there is far more to learn about their functions and regulatory mechanisms in host defense and inflammatory responses.

The synergistic regulatory effect of Runx2 and MEF transcription factors on osteoblast differentiation markers

  • Lee, Jae-Mok;Libermann, Towia A.;Cho, Je-Yoel
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.1
    • /
    • pp.39-44
    • /
    • 2010
  • Purpose: Bone tissues for clinical application can be improved by studies on osteoblast differentiation. Runx2 is known to be an important transcription factor for osteoblast differentiation. However, bone morphogenetic protein (BMP)-2 treatment to stimulate Runx2 is not sufficient to acquire enough bone formation in osteoblasts. Therefore, it is necessary to find other regulatory factors which can improve the transcriptional activity of Runx2. The erythroblast transformation-specific (ETS) transcription factor family is reported to be involved in various aspects of cellular proliferation and differentiation. Methods: We have noticed that the promoters of osteoblast differentiation markers such as alkaline phosphatase (Alp), osteopontin (Opn), and osteocalcin (Oc) contain Ets binding sequences which are also close to Runx2 binding elements. Luciferase assays were performed to measure the promoter activities of these osteoblast differentiation markers after the transfection of Runx2, myeloid Elf-1-like factor (MEF), and Runxs+MEF. Reverse-transcription polymerase chain reaction was also done to check the mRNA levels of Opn after Runx2 and MEF transfection into rat osteoblast (ROS) cells. Results: We have found that MEF, an Ets transcription factor, increased the transcriptional activities of Alp, Opn, and Oc. The addition of Runx2 resulted in the 2- to 6-fold increase of the activities. This means that these two transcription factors have a synergistic effect on the osteoblast differentiation markers. Furthermore, early introduction of these two Runx2 and MEF factors significantly elevated the expression of the Opn mRNA levels in ROS cells. We also showed that Runx2 and MEF proteins physically interact with each other. Conclusions: Runx2 interacts with MEF proteins and binds to the promoters of the osteoblast markers such as Opn nearby MEF to increase its transcriptional activity. Our results also imply that osteoblast differentiation and bone formation can be increased by activating MEF to elicit the synergistic effect of Runx2 and MEF.

Posttranslational and epigenetic regulation of the CLOCK/BMAL1 complex in the mammalian

  • Lee, Yool;Kim, Kyung-Jin
    • Animal cells and systems
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Most living organisms synchronize their physiological and behavioral activities with the daily changes in the environment using intrinsic time-keeping systems called circadian clocks. In mammals, the key molecular features of the internal clock are transcription- and translational-based negative feedback loops, in which clock-specific transcription factors activate the periodic expression of their own repressors, thereby generating the circadian rhythms. CLOCK and BMAL1, the basic helix-loop-helix (bHLH)/PAS transcription factors, constitute the positive limb of the molecular clock oscillator. Recent investigations have shown that various levels of posttranslational regulation work in concert with CLOCK/BMAL1 in mediating circadian and cellular stimuli to control and reset the circadian rhythmicity. Here we review how the CLOCK and BMAL1 activities are regulated by intracellular distribution, posttranslational modification, and the recruitment of various epigenetic regulators in response to circadian and cellular signaling pathways.

Promoter Activity of the Long Terminal Repeats of Porcine Endogenous Retroviruses of the Korean Domestic Pig

  • Ha, Hong-Seok;Huh, Jae-Won;Kim, Dae-Soo;Kang, Dong-Woo;Cho, Byung-Wook;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.148-151
    • /
    • 2007
  • Porcine endogenous retroviruses (PERVs) in the pig genome represent a potential risk of infection in pig-to-human transplantation and are transmitted vertically. The solitary long terminal repeat (LTR) elements of the PERVs affect the replication properties of the individual viruses via their repeat sequences and by encoding a set of specific transcription factors. We examined the promoter activities of solitary LTR elements belonging to the PERV-A and -B families of the Korean domestic pig (KDP) using luciferase reporters. Three of the LTR structures (of PERV-A5-KDP, PERV-A7-KDP, PERV-A8-KDP) had different promoter activities in human HCT116 cells and monkey Cos7 cells, and potential negatively and positively acting regions affecting transcription were identified by deletion analysis. These data suggest that specific sequences in the U3 region of a given LTR element can affect the activities of promoter or enhancer elements in the PERV.

Inhibitory Lignans against NFAT Transcription Factor from Acanthopanax koreanum

  • Cai, Xing-Fu;Lee, Im-Seon;Dat, Nguyen-Tien;Guanghai-Shen;Kang, Jong-Seong;Kim, Dong-Hyun;Kim, Young-Ho
    • Archives of Pharmacal Research
    • /
    • v.27 no.7
    • /
    • pp.738-741
    • /
    • 2004
  • Three lignans isolated from the roots of A. koreanum (Araliaceae), namely eleutheroside E(1), tortoside A(2), and hemiariensin(4), were evaluated for their ability to inhibit NFAT transcription factor. Of these compounds, compound 4, possessing a diarylbutane skeleton, exhibited potent inhibitory activity against NFAT transcription factor (($IC_{50}$ : 36.3${\pm}2.5{\mu}\textrm{M}$). However, the activities of 1 (($IC_{50}$:>500 11M) and 2 (($IC_{50}$: 136.1 ${\pm}9.4\mu\textrm{M}$), which possess bisaryldioxabicy-clooctane skeletons, were lower. As the lignan derivatives of the same skeletons, hinokinin (5) and (-)-yatein (6) with diarylbutane skeletons and(+)-syringaresinol (3) with a bisaryldioxabicy-clooctane skeleton were also studied for their inhibitory effects on NFAT transcription factor.

Effect of Yukmigihwang-tang kamibang on the Expression of Osteo-related Genes, TG2 and BMP4 (육미지황탕가미방이 골형성 관련 유전자인 TG2와 BMP4의 전사활성에 미치는 영향)

  • 신용욱;박용일;김홍렬;이응세
    • The Journal of Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.190-197
    • /
    • 2002
  • Objectives : This study was performed to examine the effect of Yukmigiwhang-tang kamibang, a mixture of oriental herbal extracts, on the transcription of bone fonnation genes, BMP4 (bone morphogenetic protein 4) and TG2 (transglutaminase-2). Methods : Bone-related cells, MG-63 (human male osteosarcoma), HOS-TE85 (human female osteosarcoma), and KG-l (bone marrow) were cultured with portions of Yukmigiwhang-tang kamibang and the transcription activities of bone-related genes, BMP4 (bone morphogenetic protein 4) and TG2 (transglutaminase-2), were determined by Reverse-Transcription Polymerase Chain Reaction (RT-PCR). Results : Transcription of BMP4 gene in HOS-TE85 cell increased up to 40% at 0.3% (v/v) of Yukmigiwhang- tang kamibang extract and that of TG2 gene in MG-63 cells also increased up to 40% at 0.3-0.4% of the same extract. Although it was less significant when compared to those in other cells, the transcription of BMP4 gene in KG-l cells also increased up to 10 to 25%. Conclusions : These results clearly demonstrated that Yukmigiwhang-tang kamibang have an effect on transcription activity of bone-related genes, TG2 and BMP4, suggesting that it may play an important role in bone formation.

  • PDF

The Regulation of Alpha-Amylase Synthesis in Bacillus subtilis

  • Won, Mi-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.256-260
    • /
    • 1991
  • In B. subtilis, $\alpha$-amylase synthesis is regulated by amyR located directly on the upstream of amyE. Three different amyR alleles have been reported, amyR1, amyR2 and amyR3. Strains bearing the gra-10 mutation which confers derepression for catabolite repression has GlongrightarrowA transition mutation at +5 of amyR1. S1 nuclease mapping demonstrated that transcription initiated at 8 bases downstream from the -10 region of putative E$\sigma^{A}$ promoter P1 in amyR1 and gra-10. In amyR2, the major transcription initiatd at the same place and the minor, 10 bases downstream from -10 of P2. The transcript from P2 contributed approximately 15-20% of total amyE mRNA. S1 nuclease protection experiment indicated that amyE mRNA levels corresponded to the rate of synthesis assumed by specific activities of $\alpha$-amylase in culture supernatants, suggesting that $\alpha$-amylase synthesis is regulated at the level of transcription.n.

  • PDF