Browse > Article
http://dx.doi.org/10.4062/biomolther.2012.20.3.340

Sarsasapogenin Increases Melanin Synthesis via Induction of Tyrosinase and Microphthalmia-Associated Transcription Factor Expression in Melan-a Cells  

Moon, Eun-Jung (Graduate School of East-West Medical Science, Kyung Hee University Global Campus)
Kim, Ae-Jung (Graduate School of Alternative Medicine, Kyonggi University)
Kim, Sun-Yeou (College of Pharmacy, Gachon University)
Publication Information
Biomolecules & Therapeutics / v.20, no.3, 2012 , pp. 340-345 More about this Journal
Abstract
Sarsasapogenin (SAR) is a steroidal sapogenin that is used as starting material for the industrial synthesis of steroids. It has various pharmacological benefits, such as antitumor and antidepressant activities. Since its effect on melanin biosynthesis has not been reported, we used murine melanocyte melan-a cells to investigate whether SAR influences melanogenesis. In this study, SAR significantly increased the melanin content of the melan-a cells from 1 to 10 ${\mu}M$. Based on an enzymatic activity assay using melan-a cell lysate, SAR had no effect on tyrosinase and DOPAchrome tautomerase activities. It also did not affect the protein expression of tyrosinase-related protein 1 and DOPAchrome tautomerase. However, protein levels of tyrosinase and microphthalmia-associated transcription factor were strongly stimulated by treatment with SAR. Therefore, our reports suggest that SAR treatment may induce melanogenesis through the stimulation of tyrosinase and microphthalmia-associated transcription factor expression in melan-a cells.
Keywords
Sarsasapogenin; Melanogenesis; Hyperpigmentation; Tyrosinase; Microphthalmia-associated transcription factor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Takahashi, H. and Parsons, P. G. (1990) In vitro phenotypic alteration of human melanoma cells induced by differentiating agents: heterogeneous effects on cellular growth and morphology, enzymatic activity, and antigenic expression. Pigment Cell Res. 3, 223-232.   DOI
2 Toyofuku, K., Wada, I., Valencia, J. C., Kushimoto, T., Ferrans, V. J. and Hearing, V. J. (2001) Oculocutaneous albinism types 1 and 3 are ER retention diseases: mutation of tyrosinase or Tyrp1 can affect the processing of both mutant and wild-type proteins. FASEB J. 15, 2149-2161.   DOI   ScienceOn
3 Wilkins, L., Gilchrest, B. A., Szabo, G., Weinstein, R. and Maciag, T. (1985) The stimulation of normal human melanocyte proliferation in vitro by melanocyte growth factor from bovine brain. J. Cell Physiol. 122, 350-361.   DOI
4 Wong, G. and Pawelek, J. (1975) Melanocyte-stimulating hormone promotes activation of pre-existing tyrosinase molecules in Cloudman S91 melanoma cells. Nature 255, 644-646.   DOI
5 Lan, C. C., Chen, G. S., Chiou, M. H., Wu, C. S., Chang, C. H. and Yu, H. S. (2005) FK506 promotes melanocyte and melanoblast growth and creates a favourable milieu for cell migration via keratinocytes: possible mechanisms of how tacrolimus ointment induces repigmentation in patients with vitiligo. Br. J. Dermatol. 153, 498-505.   DOI
6 Maeda, K., Naganuma, M., Fukuda, M., Matsunaga, J. and Tomita, Y. (1996) Effect of pituitary and ovarian hormones on human melanocytes in vitro. Pigment Cell Res. 9, 204-212.   DOI
7 Lee, J., Jung, E., Park, J., Park, E., Kim, J., Hong, S., Park, J., Park, S. and Park, D. (2005) Glycyrrhizin induces melanogenesis by elevating a cAMP level in b16 melanoma cells. J. Invest. Dermatol. 124, 405-411.   DOI
8 Lee, J., Jung, K., Kim, Y. S. and Park, D. (2007) Diosgenin inhibits melanogenesis through the activation of phosphatidylinositol-3-kinase pathway (PI3K) signaling. Life Sci. 81, 249-254.   DOI
9 Ma, D., Zhang, J., Sugahara, K., Sagara, Y. and Kodama, H. (2001) Effect of sarsasapogenin and its derivatives on the stimulus coupled responses of human neutrophils. Clin. Chim. Acta. 314, 107-112.   DOI
10 Ren, L. X., Luo, Y. F., Li, X. and Wu, Y. L. (2007) Antidepressant activity of sarsasapogenin from Anemarrhena asphodeloides Bunge (Liliaceae). Pharmazie 62, 78-79.
11 Riley, P. A. (1997) Melanin. Int. J. Biochem. Cell Biol. 29, 1235-1239.   DOI   ScienceOn
12 Schallreuter, K. U., Hasse, S., Rokos, H., Chavan, B., Shalbaf, M., Spencer, J. D. and Wood, J. M. (2009) Cholesterol regulates melanogenesis in human epidermal melanocytes and melanoma cells. Exp. Dermatol. 18, 680-688.   DOI
13 Scott, G. A., Jacobs, S. E. and Pentland, A. P. (2006) sPLA2-X stimulates cutaneous melanocyte dendricity and pigmentation through a lysophosphatidylcholine-dependent mechanism. J. Invest. Dermatol. 126, 855-861.   DOI
14 Hunt, G., Todd, C., Cresswell, J. E. and Thody, A. J. (1994) Alpha-melanocyte stimulating hormone and its analogue Nle4DPhe7 alpha- MSH affect morphology, tyrosinase activity and melanogenesis in cultured human melanocytes. J. Cell Sci. 107, 205-211.
15 Kim, D. S., Kim, S. Y., Park, S. H., Choi, Y. G., Kwon, S. B., Kim, M. K., Na, J. I., Youn, S. W. and Park, K. C. (2005) Inhibitory effects of 4-n-butylresorcinol on tyrosinase activity and melanin synthesis. Biol. Pharm. Bull. 28, 2216-2219.   DOI   ScienceOn
16 Ito, A., Tanaka, C., Takeuchi, T. and Mishima, Y. (1991) Glucocorticoid stimulates melanogenesis and tyrosinase gene expression in B16 melanoma cells. Pigment Cell Res. 4, 247-251.   DOI
17 Jeon, S., Kim, N. H., Koo, B. S., Lee, H. J. and Lee, A. Y. (2007) Bee venom stimulates human melanocyte proliferation, melanogenesis, dendricity and migration. Exp. Mol. Med. 39, 603-613.   DOI   ScienceOn
18 Jimenez-Cervantes, C., Solano, F., Kobayashi, T., Urabe, K., Hearing, V. J., Lozano, J. A. and Garcia-Borron, J. C. (1994) A new enzymatic function in the melanogenic pathway. The 5,6-dihydroxyindole- 2-carboxylic acid oxidase activity of tyrosinase-related protein-1 (TRP1). J. Biol. Chem. 269, 17993-18000.
19 Kobayashi, N., Nakagawa, A., Muramatsu, T., Yamashina, Y., Shirai, T., Hashimoto, M. W., Ishigaki, Y., Ohnishi, T. and Mori, T. (1998) Supranuclear melanin caps reduce ultraviolet induced DNA photoproducts in human epidermis. J. Invest. Dermatol. 110, 806-810.   DOI
20 Kovacs, S. O. (1998) Vitiligo. J. Am. Acad. Dermatol. 38, 647-666.   DOI   ScienceOn
21 Krasagakis, K., Garbe, C., Kruger-Krasagakes, S. and Orfanos, C. E. (1993) 12-O-tetradecanoylphorbol-13-acetate not only modulates proliferation rates, but also alters antigen expression and LAK-cell susceptibility of normal human melanocytes in vitro. J. Invest. Dermatol. 100, 653-659.   DOI
22 Cabanes, J., Chazarra, S. and Garcia-Carmona, F. (1994) Kojic acid, a cosmetic skin whitening agent, is a slow-binding inhibitor of catecholase activity of tyrosinase. J. Pharm. Pharmacol. 46, 982-985.   DOI   ScienceOn
23 Halaban, R., Ghosh, S. and Baird, A. (1987) bFGF is the putative natural growth factor for human melanocytes. In Vitro Cell Dev. Biol. 23, 47-52.   DOI
24 del Marmol, V. and Beermann, F. (1996) Tyrosinase and related proteins in mammalian pigmentation. FEBS Lett. 381, 165-168.   DOI   ScienceOn
25 Fuller, B. B., Drake, M. A., Spaulding, D. T. and Chaudhry, F. (2000) Downregulation of tyrosinase activity in human melanocyte cell cultures by yohimbine. J. Invest. Dermatol. 114, 268-276.   DOI   ScienceOn
26 Grabbe, J., Welker, P., Dippel, E. and Czarnetzki, B. M. (1994) Stem cell factor, a novel cutaneous growth factor for mast cells and melanocytes. Arch. Dermatol. Res. 287, 78-84.   DOI   ScienceOn
27 Halaban, R., Pomerantz, S. H., Marshall, S. and Lerner, A. B. (1984) Tyrosinase activity and abundance in Cloudman melanoma cells. Arch. Biochem. Biophys. 230, 383-387.   DOI
28 Hearing, V. J. (2000) The melanosome: the perfect model for cellular responses to the environment. Pigment Cell Res. 13 Suppl 8, 23-34.   DOI
29 Hosoi, J., Abe, E., Suda, T. and Kuroki, T. (1985) Regulation of melanin synthesis of B16 mouse melanoma cells by 1 alpha, 25-dihydroxyvitamin D3 and retinoic acid. Cancer Res. 45, 1474-1478.
30 Hu, Y., Xia, Z., Sun, Q., Orsi, A. and Rees, D. (2005) A new approach to the pharmacological regulation of memory: Sarsasapogenin improves memory by elevating the low muscarinic acetylcholine receptor density in brains of memory-defi cit rat models. Brain Res. 1060, 26-39.   DOI
31 Bertolotto, C., Busca, R., Abbe, P., Bille, K., Aberdam, E., Ortonne, J. P. and Ballotti, R. (1998b) Different cis-acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia. Mol. Cell Biol. 18, 694-702.
32 Applezweig. (1987) Treatment of obesity and diabetes using sapogenins. US4680289.
33 Bao, W., Pan, H., Lu, M., Ni, Y., Zhang, R. and Gong, X. (2007) The apoptotic effect of sarsasapogenin from Anemarrhena asphodeloides on HepG2 human hepatoma cells. Cell Biol. Int. 31, 887-892.   DOI
34 Bertolotto, C., Abbe, P., Hemesath, T. J., Bille, K., Fisher, D. E., Ortonne, J. P. and Ballotti, R. (1998a) Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J. Cell Biol. 142, 827-835.   DOI   ScienceOn
35 Birlea, S. A., Costin, G. E. and Norris, D. A. (2009) New insights on therapy with vitamin D analogs targeting the intracellular pathways that control repigmentation in human vitiligo. Med. Res. Rev. 29, 514-546.   DOI