• Title/Summary/Keyword: Transcription Factor

Search Result 1,962, Processing Time 0.024 seconds

Inhibitory Effects of Polyopes affinis Ethanol Extract on Melanogenesis in B16F10 Melanoma Cells (참까막살 에탄올 추출물이 B16F10 흑색종 세포에서의 멜라닌합성에 미치는 영향연구)

  • Kim, Hyang Suk;Choi, Yung Hyun;Hwang, Hye Jin
    • Journal of Life Science
    • /
    • v.29 no.9
    • /
    • pp.972-976
    • /
    • 2019
  • Polyopes affinis is a kind of red algae found in the South coast and near Jeju Island of Korea. The purpose of this study was to investigate the effects of Polyopes affinis ethanol extract (PAEE) on melanogenesis in ${\alpha}-MSH$ stimulated B16F10 melanoma cells. Melanoma cells were cultured for 72 hr treated with PAEE. Total melanin content and the activity of tyrosinase, a key enzyme in melanogenesis, were measured. When the melanin content in B16F10 melanoma cells was tested, PAEE was decreased in a dose-dependent manner: treatment with 100, 300, and $500{\mu}g/ml$ caused 25%, 30%, and 35% reduction, respectively. Treatment of 100, 300, and $500{\mu}g/ml$ of PAEE caused 6%, 12%, and 21% reduction of tyrosinase activities in B16F10 melanoma cells. Also, PAEE suppressed the expression of tyrosinase, tyrosinase-related protein-1, tyrosinase-related protein-2, and melanocyte-inducing transcription factor in B16F10 melanoma cells. A concentration of $500{\mu}g/ml$ of PAEE showed a greater decrease in tyrosinase activity, melanin content, and melanogenic enzyme protein expression. These results indicate that PAEE inhibits melanin synthesis and tyrosinase activity, and Polyopes affinis ethanol extract could be used as a functional whitening agent.

Extracts of Torilis Japonica Suppresses of Ultraviolet B-induced Matrix Metalloproteinase-1/-3 Expressions in Human Dermal Fibroblasts (사람 피부 섬유아세포에서 자외선으로 유도된 기질분해효소-1과 기질분해효소-3의 발현 유도에 대한 사상자 추출물의 억제효과)

  • Noh, Eun Mi;Song, Hyun Kyung;Kim, Jeong Mi;Lee, Guem San;Kwon, Kang Beom;Lee, Young Rae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.33 no.3
    • /
    • pp.175-180
    • /
    • 2019
  • Torilis Japonica (TJ) has been used as an anti-allergy, antifungal, and antibacterial agent. Recent studies have reported that it also shows anti-cancer effects. It is report that TJ inhibits melanin synthesis in melanocyte in the skin. However, the effect and mechanism of TJ extract (TJE) on Ultraviolet (UV)B-induced photoaging are unknown. In this study, we investigated the preventive effects of TJE on matrix metalloproteinase (MMP)-1 and MMP-3 expressions and the underlying molecular mechanism in UVB-irradiated primary human dermal fibroblasts (HDFs). The effect of TJE on HDF cell viability was determined using the XTT assay and cell counting. MMP-1 and MMP-3 expressions levels were measured by western blotting and real-time PCR analysis. Activations of mitogen-activated protein kinase (MAPKinase), nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$), and activator protein-1(AP-1) were measured by western blotting. Our results showed that TJE effectively reduced UVB-induced MMP-1 and MMP-3 protein and mRNA levels. Moreover, TJE significantly blocked the UVB-induced activation of MAPK (p38 and JNK) and transcription factors ($NF-{\kappa}B$ and AP-1), but not ERK. Taken together, our results suggest that the TJE inhibits UVB-induced MMP expressions in HDFs and its may be a potential agent for the prevention and treatment of skin photoaging.

Dammarane-type triterpene oligoglycosides from the leaves and stems of Panax notoginseng and their antiinflammatory activities

  • Li, Juan;Wang, Ru-Feng;Zhou, Yue;Hu, Hai-Jun;Yang, Ying-Bo;Yang, Li;Wang, Zheng-Tao
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.377-384
    • /
    • 2019
  • Background: Inflammation is widespread in the clinical pathology and closely associated to the progress of many diseases. Triterpenoid saponins as a key group of active ingredients in Panax notoginseng (Burk.) F.H. Chen were demonstrated to show antiinflammatory effects. However, the chemical structures of saponins in the leaves and stems of Panax notoginseng (PNLS) are still not fully clear. Herein, the isolation, purification and further evaluation of the antiinflammatory activity of dammarane-type triterpenoid saponins from PNLS were conducted. Methods: Silica gel and reversed-phase C8 column chromatography were used. Furthermore, preparative HPLC was used as a final purification technique to obtain minor saponins with high purities. MS, NMR experiments, and chemical methods were used in the structural identifications. The antiinflammatory activities of the isolated saponins were assessed by measuring the nitric oxide production in RAW 264.7 cells stimulated by lipopolysaccharides. Real-time reverse transcription polymerase chain reaction was used to measure the gene expressions of inflammation-related gene. Results: Eight new minor dammarane-type triterpene oligoglycosides, namely notoginsenosides LK1-LK8 (1-8) were obtained from PNLS, along with seven known ones. Among the isolated saponins, gypenoside IX significantly suppressed the nitric oxide production and inflammatory cytokines including tumor necrosis $factor-{\alpha}$, interleukin 10, interferon-inducible protein 10 and $interleukin-1{\beta}$. Conclusion: The eight saponins may enrich and expand the chemical library of saponins in Panax genus. Moreover, it is reported for the first time that gypenoside IX showed moderate antiinflammatory activity.

Genome wide association study on feed conversion ratio using imputed sequence data in chickens

  • Wang, Jiaying;Yuan, Xiaolong;Ye, Shaopan;Huang, Shuwen;He, Yingting;Zhang, Hao;Li, Jiaqi;Zhang, Xiquan;Zhang, Zhe
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.4
    • /
    • pp.494-500
    • /
    • 2019
  • Objective: Feed consumption contributes a large percentage for total production costs in the poultry industry. Detecting genes associated with feeding traits will be of benefit to improve our understanding of the molecular determinants for feed efficiency. The objective of this study was to identify candidate genes associated with feed conversion ratio (FCR) via genomewide association study (GWAS) using sequence data imputed from single nucleotide polymorphism (SNP) panel in a Chinese indigenous chicken population. Methods: A total of 435 Chinese indigenous chickens were phenotyped for FCR and were genotyped using a 600K SNP genotyping array. Twenty-four birds were selected for sequencing, and the 600K SNP panel data were imputed to whole sequence data with the 24 birds as the reference. The GWAS were performed with GEMMA software. Results: After quality control, 8,626,020 SNPs were used for sequence based GWAS, in which ten significant genomic regions were detected to be associated with FCR. Ten candidate genes, ubiquitin specific peptidase 44, leukotriene A4 hydrolase, ETS transcription factor, R-spondin 2, inhibitor of apoptosis protein 3, sosondowah ankyrin repeat domain family member D, calmodulin regulated spectrin associated protein family member 2, zinc finger and BTB domain containing 41, potassium sodium-activated channel subfamily T member 2, and member of RAS oncogene family were annotated. Several of them were within or near the reported FCR quantitative trait loci, and others were newly reported. Conclusion: Results from this study provide valuable prior information on chicken genomic breeding programs, and potentially improve our understanding of the molecular mechanism for feeding traits.

The effect of heat stress on frame switch splicing of X-box binding protein 1 gene in horse

  • Lee, Hyo Gun;Khummuang, Saichit;Youn, Hyun-Hee;Park, Jeong-Woong;Choi, Jae-Young;Shin, Teak-Soon;Cho, Seong-Keun;Kim, Byeong-Woo;Seo, Jakyeom;Kim, Myunghoo;Park, Tae Sub;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8
    • /
    • pp.1095-1103
    • /
    • 2019
  • Objective: Among stress responses, the unfolded protein response (UPR) is a well-known mechanism related to endoplasmic reticulum (ER) stress. ER stress is induced by a variety of external and environmental factors such as starvation, ischemia, hypoxia, oxidative stress, and heat stress. Inositol requiring enzyme $1{\alpha}$ ($IRE1{\alpha}$)-X-box protein 1 (XBP1) is the most conserved pathway involved in the UPR and is the main component that mediates $IRE1{\alpha}$ signalling to downstream ER-associated degradation (ERAD)- or UPR-related genes. XBP1 is a transcription factor synthesised via a novel mechanism called 'frame switch splicing', and this process has not yet been studied in the horse XBP1 gene. Therefore, the aim of this study was to confirm the frame switch splicing of horse XBP1 and characterise its dynamics using Thoroughbred muscle cells exposed to heat stress. Methods: Primary horse muscle cells were used to investigate heat stress-induced frame switch splicing of horse XBP1. Frame switch splicing was confirmed by sequencing analysis. XBP1 amino acid sequences and promoter sequences of various species were aligned to confirm the sequence homology and to find conserved cis-acting elements, respectively. The expression of the potential XBP1 downstream genes were analysed by quantitative real-time polymerase chain reaction. Results: We confirmed that splicing of horse XBP1 mRNA was affected by the duration of thermal stress. Twenty-six nucleotides in the mRNA of XBP1 were deleted after heat stress. The protein sequence and the cis-regulatory elements on the promoter of horse XBP1 are highly conserved among the mammals. Induction of putative downstream genes of horse XBP1 was dependent on the duration of heat stress. We confirmed that both the mechanisms of XBP1 frame switch splicing and various binding elements found in downstream gene promoters are highly evolutionarily conserved. Conclusion: The frame switch splicing of horse XBP1 and its dynamics were highly conserved among species. These results facilitate studies of ER-stress in horse.

Inhibition of miR-128 Abates Aβ-Mediated Cytotoxicity by Targeting PPAR-γ via NF-κB Inactivation in Primary Mouse Cortical Neurons and Neuro2a Cells

  • Geng, Lijiao;Zhang, Tao;Liu, Wei;Chen, Yong
    • Yonsei Medical Journal
    • /
    • v.59 no.9
    • /
    • pp.1096-1106
    • /
    • 2018
  • Purpose: Alzheimer's disease (AD) is the sixth most common cause of death in the United States. MicroRNAs have been identified as vital players in neurodegenerative diseases, including AD. microRNA-128 (miR-128) has been shown to be dysregulated in AD. This study aimed to explore the roles and molecular mechanisms of miR-128 in AD progression. Materials and Methods: Expression patterns of miR-128 and peroxisome proliferator-activated receptor gamma ($PPAR-{\gamma}$) messenger RNA in clinical samples and cells were measured using RT-qPCR assay. $PPAR-{\gamma}$ protein levels were determined by Western blot assay. Cell viability was determined by MTT assay. Cell apoptotic rate was detected by flow cytometry via double-staining of Annexin V-FITC/PI. Caspase 3 and $NF-{\kappa}B$ activity was determined by a Caspase 3 Activity Assay Kit or $NF-{\kappa}B$ p65 Transcription Factor Assay Kit, respectively. Bioinformatics prediction and luciferase reporter assay were used to investigate interactions between miR-128 and $PPAR-{\gamma}$ 3'UTR. Results: MiR-128 expression was upregulated and $PPAR-{\gamma}$ expression was downregulated in plasma from AD patients and $amyloid-{\beta}$ $(A{\beta})-treated$ primary mouse cortical neurons (MCN) and Neuro2a (N2a) cells. Inhibition of miR-128 decreased $A{\beta}-mediated$ cytotoxicity through inactivation of $NF-{\kappa}B$ in MCN and N2a cells. Moreover, $PPAR-{\gamma}$ was a target of miR-128. $PPAR-{\gamma}$ upregulation attenuated $A{\beta}-mediated$ cytotoxicity by inactivating $NF-{\kappa}B$ in MCN and N2a cells. Furthermore, $PPAR-{\gamma}$ downregulation was able to abolish the effect of anti-miR-128 on cytotoxicity and $NF-{\kappa}B$ activity in MCN and N2a cells. Conclusion: MiR-128 inhibitor decreased $A{\beta}-mediated$ cytotoxicity by upregulating $PPAR-{\gamma}$ via inactivation of $NF-{\kappa}B$ in MCN and N2a cells, providing a new potential target in AD treatment.

Anti-Oral Microbial Activity and Anti-Inflammatory Effects of Rosmarinic Acid in Lipopolysaccharide-Stimulated MC3T3-E1 Osteoblastic Cells on a Titanium Surface

  • Jeong, Moon-Jin;Lim, Do-Seon;Heo, Kyungwon;Jeong, Soon-Jeong
    • Journal of dental hygiene science
    • /
    • v.20 no.4
    • /
    • pp.221-229
    • /
    • 2020
  • Background: The purpose of this study was to investigate the anti-oral microbial activity and anti-inflammatory effects of rosmarinic acid (RA) in lipopolysaccharide (LPS)-stimulated MC3T3-E1 osteoblastic cells on a titanium (Ti) surface during osseointegration, and to confirm the possibility of using RA as a safe natural substance for the control of peri-implantitis (PI) in Ti-based dental implants. Methods: A disk diffusion test was conducted to confirm the antimicrobial activity of RA against oral microorganisms. In order to confirm the anti-inflammatory effects of RA, inflammatory conditions were induced with 100 ng/ml of LPS in MC3T3-E1 osteoblastic cells on the Ti surface treated with or without 14 ㎍/ml of RA. The production of nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-stimulated MC3T3-E1 osteoblastic cells on the Ti surface was confirmed using an NO assay kit and PGE2 enzyme-linked immunosorbent assay kit. Reverse transcription polymerase chain reaction and western blot analysis were performed to confirm the expression of interleukin (IL)-1β and tumor necrosis factor (TNF)-α in total RNA and protein. Results: RA showed weak antimicrobial effects against Streptococcus mutans and Escherichia coli, but no antimicrobial activity against the bacteria Aggregatibacter actinomycetemcomitans and the fungus Candida albicans. RA reduced the production of pro-inflammatory mediators, NO and PGE2, and proinflammatory cytokines, TNF-α and IL-1β, in LPS-stimulated MC3T3-E1 osteoblastic cells on the Ti surface at the protein and mRNA levels. Conclusion: RA not only has anti-oral microbial activity, but also anti-inflammatory effects in LPS-stimulated MC3T3-E1 osteoblasts on the Ti surface, therefore, it can be used as a safe functional substance derived from plants for the prevention and control of PI for successful Ti-based implants.

Role of stearyl-coenzyme A desaturase 1 in mediating the effects of palmitic acid on endoplasmic reticulum stress, inflammation, and apoptosis in goose primary hepatocytes

  • Tang, Bincheng;Qiu, Jiamin;Hu, Shenqiang;Li, Liang;Wang, Jiwen
    • Animal Bioscience
    • /
    • v.34 no.7
    • /
    • pp.1210-1220
    • /
    • 2021
  • Objective: Unlike mammals, goose fatty liver shows a strong tolerance to fatty acids without obvious injury. Stearyl-coenzyme A desaturase 1 (SCD1) serves crucial role in desaturation of saturated fatty acids (SAFs), but its role in the SAFs tolerance of goose hepatocytes has not been reported. This study was conducted to explore the role of SCD1 in regulating palmitic acid (PA) tolerance of goose primary hepatocytes. Methods: 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide was examined to reflect the effect of PA on hepatocytes viability, and quantitative polymerase chain reaction was used to detect the mRNA levels of several genes related to endoplasmic reticulum (ER) stress, inflammation, and apoptosis, and the role of SCD1 in PA tolerance of goose hepatocytes was explored using RNA interfere. Results: Our results indicated that goose hepatocytes exhibited a higher tolerant capacity to PA than human hepatic cell line (LO2 cells). In goose primary hepatocytes, the mRNA levels of fatty acid desaturation-related genes (SCD1 and fatty acid desaturase 2) and fatty acid elongate enzyme-related gene (elongase of very long chain fatty acids 6) were significantly upregulated with 0.6 mM PA treatment. However, in LO2 cells, expression of ER stress-related genes (x box-binding protein, binding immunoglobulin protein, and activating transcription factor 6), inflammatory response-related genes (interleukin-6 [IL-6], interleukin-1β [IL-1β], and interferon-γ) and apoptosis-related genes (bcl-2-associated X protein, b-cell lymphoma 2, Caspase-3, and Caspase-9) was significantly enhanced with 0.6 mM PA treatment. Additionally, small interfering RNA (siRNA) mediated downregulation of SCD1 significantly reduced the PA tolerance of goose primary hepatocytes under the treatment of 0.6 mM PA; meanwhile, the mRNA levels of inflammatory-related genes (IL-6 and IL-1β) and several key genes involved in the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), forkhead box O1 (FoxO1), mammalian target of rapamycin and AMPK pathways (AKT1, AKT2, FoxO1, and sirtuin 1), as well as the protein expression of cytochrome C and the apoptosis rate were upregulated. Conclusion: In conclusion, our data suggested that SCD1 was involved in enhancing the PA tolerance of goose primary hepatocytes by regulating inflammation- and apoptosis-related genes expression.

Observational Study of ChondroT's Improvement of Blood Metabolites in High-fat Diet-induced Hyperlipidemia (고지방 식이 유도 고지혈증에 대한 ChondroT의 혈액 내 지질대사에 미치는 영향)

  • Yoon, Chan Suk;Kim, Do Hyeong;Na, Chang Su;Jeong, Ji Won;Kim, Ji Hoon;Kim, Sun Gil;Choi, Ji Min;Kim, Seon Jong
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.31 no.1
    • /
    • pp.81-93
    • /
    • 2021
  • Objectives The objective of the study was to investigate effects of ChondroT by improvement of blood metabolites in high-fat diet (HFD)-induced hyperlipidemia rat model. Methods Sprague-Dawley rats were randomly assigned to intact, control, simvastatin, and CT100, CT200 and CT400 (each n=6). For observing cholesterol change, animals were first fed high fat diet for 5 weeks and then high fat diet and drugs for 3 weeks. At the end of the experiment, total cholesterol, triglyceride, high density lipoprotein-cholesterol (HDL-C) and low density lipoprotein-cholesterol (LDL-C) were analyzed by obtained blood collection. Further, amplified leptin, peroxisome proliferator activated receptor (PPAR) and adiponectin DNA were observed by reverse transcription polymerase chain reaction analysis. Results Observing the effect of ChondroT on the change of lipid metabolism in hyperlipidemia-induced rats, triglyceride and total cholesterol were significantly decreased in SV100 group, HDL-C was significantly increased in SV100, CT100 and CT200 groups, and LDL-C was significantly decreased in SV100, CT100, CT200 and CT400 groups, compared to the control group. Leptin level in hyperlipidemia-induced rats was significantly decreased in CT100 and CT200 groups, compared to the control group. The effect of ChondroT on adiponectin level in hyperlipidemia-induced rats was significantly increased in SV100, CT100 and CT200 groups. PPAR level in hyperlipidemia-induced rats was significantly decreased in SV100, CT200 and CT400 groups. Platelete activating factor level in hyperlipidemia-induced rats was significantly decreased in CT100 and CT200 groups. Conclusions Based on these results, it could be suggested that ChondroT has certain effects of improving blood metabolites in HFD-induced hyperlipidemia.

Melanogenesis Promotion by 3-Deazaneplanocin A, a Specific Inhibitor of S-Adenosylhomocysteine Hydrolase, in B16/F10 Melanoma Cells (B16/F10 흑색종 세포에서 S-Adenosylhomocysteine Hydrolase 의 선택적 저해제 3-Deazaneplanocin A 에 의한)

  • Hwang, Yun Jeong;Boo, Yong Chool
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.2
    • /
    • pp.107-121
    • /
    • 2021
  • Skin hypopigmentation, which is observed in albinism or vitiligo, occurs when melanin synthesis is decreased by genetic, epigenetic, and other factors. To identify drug candidates that can promote melanin synthesis in cells, we screened an epigenetic modulator library consisting of 141 cell-permeable, small molecule drugs. B16/F10 murine melanoma cells were treated with each drug at 0.1 𝜇M and melanin synthesis and cell viability were subsequently monitored. As a result, (-)-neplanocin A, 3-deazaneplanocin A (DZNep), and DZNep hydrochloride were found to increase cellular melanin synthesis without causing cytotoxicity. Because these three structurally related drugs exhibited similar dose-dependent effects on melanin synthesis and cell viability, DZNep was selected as a representative drug for additional experiments. DZNep increased intracellular melanin content and tyrosinase (TYR) activity. DZNep also induced the expression of TYR, tyrosinase-related protein 1 (TYRP1), and dopachrome tautomerase (DCT) at the mRNA and protein levels. DZNep also induced the mRNA and protein expression of microphthalmia-associated transcription factor (MITF), a key regulator of melanin synthesis. DZNep is a specific inhibitor of S-adenosylhomocysteine hydrolase and it caused the accumulation of S-adenosylhomocysteine that inhibits histone methyltransferases in cells. This study suggests that melanogenesis can be modulated by targeting S-adenosylhomocysteine hydrolase in certain cellular contexts.