• Title/Summary/Keyword: Trajectory prediction

Search Result 170, Processing Time 0.024 seconds

RBF Neural Network Sturcture for Prediction of Non-linear, Non-stationary Time Series (비선형, 비정상 시계열 예측을 위한RBF(Radial Basis Function) 신경회로망 구조)

  • Kim, Sang-Hwan;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2299-2301
    • /
    • 1998
  • In this paper, a modified RBF (Radial Basis Function) neural network structure is suggested for the prediction of time series with non-linear, non-stationary characteristics. Conventional RBF neural network predicting time series by using past outputs is for sensing the trajectory of the time series and for reacting when there exists strong relation between input and hidden neuron's RBF center. But this response is highly sensitive to level and trend of time serieses. In order to overcome such dependencies, hidden neurons are modified to react to the increments of input variable and multiplied by increments(or decrements) of out puts for prediction. When the suggested structure is applied to prediction of Lorenz equation, and Rossler equation, improved performances are obtainable.

  • PDF

Feasibility Prediction-Based Obstacle Removal Planning and Contactable Disinfection Robot System for Surface Disinfection in an Untidy Environment (비정돈 환경의 표면 소독을 위한 실현성 예측 기반의 장애물 제거 계획법 및 접촉식 방역 로봇 시스템)

  • Kang, Junsu;Yi, Inje;Chung, Wan Kyun;Kim, Keehoon
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.283-290
    • /
    • 2021
  • We propose a task and motion planning algorithm for clearing obstacles and wiping surfaces, which is essential for surface disinfection during the pathogen disinfection process. The proposed task and motion planning algorithm determines task parameters such as grasping pose and placement location during the planning process without using pre-specified or discretized values. Furthermore, to quickly inspect many unit motions, we propose a motion feasibility prediction algorithm consisting of collision checking and an SVM model for inverse mechanics and self-collision prediction. Planning time analysis shows that the feasibility prediction algorithm can significantly increase the planning speed and success rates in situations with multiple obstacles. Finally, we implemented a hierarchical control scheme to enable wiping motion while following a planner-generated joint trajectory. We verified our planning and control framework by conducted an obstacle-clearing and surface wiping experiment in a simulated disinfection environment.

Traffic Information Service Model Considering Personal Driving Trajectories

  • Han, Homin;Park, Soyoung
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.951-969
    • /
    • 2017
  • In this paper, we newly propose a traffic information service model that collects traffic information sensed by an individual vehicle in real time by using a smart device, and which enables drivers to share traffic information on all roads in real time using an application installed on a smart device. In particular, when the driver requests traffic information for a specific area, the proposed driver-personalized service model provides him/her with traffic information on the driving directions in advance by predicting the driving directions of the vehicle based on the learning of the driving records of each driver. To do this, we propose a traffic information management model to process and manage in real time a large amount of online-generated traffic information and traffic information requests generated by each vehicle. We also propose a road node-based indexing technique to efficiently store and manage location-based traffic information provided by each vehicle. Finally, we propose a driving learning and prediction model based on the hidden Markov model to predict the driving directions of each driver based on the driver's driving records. We analyze the traffic information processing performance of the proposed model and the accuracy of the driving prediction model using traffic information collected from actual driving vehicles for the entire area of Seoul, as well as driving records and experimental data.

Functional regression approach to traffic analysis (함수회귀분석을 통한 교통량 예측)

  • Lee, Injoo;Lee, Young K.
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.5
    • /
    • pp.773-794
    • /
    • 2021
  • Prediction of vehicle traffic volume is very important in planning municipal administration. It may help promote social and economic interests and also prevent traffic congestion costs. Traffic volume as a time-varying trajectory is considered as functional data. In this paper we study three functional regression models that can be used to predict an unseen trajectory of traffic volume based on already observed trajectories. We apply the methods to highway tollgate traffic volume data collected at some tollgates in Seoul, Chuncheon and Gangneung. We compare the prediction errors of the three models to find the best one for each of the three tollgate traffic volumes.

2-Axis Cartesian Coordinate Robot Optimization for Air Hockey Game (에어 하키 게임을 위한 2축 직교 좌표 로봇 최적화)

  • Kim, Hui-yeon;Lee, Won-jae;Yu, Yun Seop;Kim, Nam-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.436-438
    • /
    • 2019
  • Air hockey robots are machine vision systems that allow users to play hockey balls through the camera. The position detection of the hockey ball is realized by using the color information of the ball using OpenCV library. It senses the position of the hockey ball, predicts its trajectory, and sends the result to the ARM Cortex-M board. The ARM Cortex-M board controls a 2- Axis Cartesian Coordinate Robot to run an air hockey game. Depending on the strategy of the air hockey robot, it can operate in defensive, offensive, defensive and offensive mode. In this paper, we describe a vision system development and trajectory prediction system and propose a new method to control a biaxial orthogonal robot in an air hockey game.

  • PDF

Trajectory tracking control system of unmanned ground vehicle (무인자동차 궤적 추적 제어 시스템에 관한 연구)

  • Han, Ya-Jun;Kang, Chin-Chul;Kim, Gwan-Hyung;Tac, Han-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1879-1885
    • /
    • 2017
  • This paper discusses the trajectory tracking system of unmanned ground vehicles based on predictive control. Because the unmanned ground vehicles can not satisfactorily complete the path tracking task, highly efficient and stable trajectory control system is necessary for unmanned ground vehicle to be realized intelligent and practical. According to the characteristics of unmanned vehicle, this paper built the kinematics tracking models firstly. Then studied algorithm solution with the tools of the optimal stability analysis method and proposed a tracking control method based on the model predictive control. The controller used a kinematics-based prediction model to calculate the predictive error. This controller helps the unmanned vehicle drive along the target trajectory quickly and accurately. The designed control strategy has the true robustness, simplicity as well as generality for kinematics model of the unmanned vehicle. Furthermore, the computer Simulink/Carsim results verified the validity of the proposed control method.

On-line Motion Synthesis Using Analytically Differentiable System Dynamics (분석적으로 미분 가능한 시스템 동역학을 이용한 온라인 동작 합성 기법)

  • Han, Daseong;Noh, Junyong;Shin, Joseph S.
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.133-142
    • /
    • 2019
  • In physics-based character animation, trajectory optimization has been widely adopted for automatic motion synthesis, through the prediction of an optimal sequence of future states of the character based on its system dynamics model. In general, the system dynamics model is neither in a closed form nor differentiable when it handles the contact dynamics between a character and the environment with rigid body collisions. Employing smoothed contact dynamics, researchers have suggested efficient trajectory optimization techniques based on numerical differentiation of the resulting system dynamics. However, the numerical derivative of the system dynamics model could be inaccurate unlike its analytical counterpart, which may affect the stability of trajectory optimization. In this paper, we propose a novel method to derive the closed-form derivative for the system dynamics by properly approximating the contact model. Based on the resulting derivatives of the system dynamics model, we also present a model predictive control (MPC)-based motion synthesis framework to robustly control the motion of a biped character according to on-line user input without any example motion data.

Learning the Covariance Dynamics of a Large-Scale Environment for Informative Path Planning of Unmanned Aerial Vehicle Sensors

  • Park, Soo-Ho;Choi, Han-Lim;Roy, Nicholas;How, Jonathan P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.326-337
    • /
    • 2010
  • This work addresses problems regarding trajectory planning for unmanned aerial vehicle sensors. Such sensors are used for taking measurements of large nonlinear systems. The sensor investigations presented here entails methods for improving estimations and predictions of large nonlinear systems. Thoroughly understanding the global system state typically requires probabilistic state estimation. Thus, in order to meet this requirement, the goal is to find trajectories such that the measurements along each trajectory minimize the expected error of the predicted state of the system. The considerable nonlinearity of the dynamics governing these systems necessitates the use of computationally costly Monte-Carlo estimation techniques, which are needed to update the state distribution over time. This computational burden renders planning to be infeasible since the search process must calculate the covariance of the posterior state estimate for each candidate path. To resolve this challenge, this work proposes to replace the computationally intensive numerical prediction process with an approximate covariance dynamics model learned using a nonlinear time-series regression. The use of autoregressive time-series featuring a regularized least squares algorithm facilitates the learning of accurate and efficient parametric models. The learned covariance dynamics are demonstrated to outperform other approximation strategies, such as linearization and partial ensemble propagation, when used for trajectory optimization, in terms of accuracy and speed, with examples of simplified weather forecasting.

Parallelization scheme of trajectory index using inertia of moving objects (이동체의 관성을 이용한 궤적 색인의 병렬화 기법)

  • Seo, Young-Duk;Hong, Bong-Hee
    • Journal of Korea Spatial Information System Society
    • /
    • v.8 no.1 s.16
    • /
    • pp.59-75
    • /
    • 2006
  • One of the most challenging and encouraging applications of state-of-the-art technology is the field of traffic control systems. It combines techniques from the areas of telecommunications and computer science to establish traffic information and various assistance services. The support of the system requires a moving objects database system (MODB) that stores moving objects efficiently and performs spatial or temporal queries with time conditions. In this paper, we propose schemes to distribute an index nodes of trajectory based on spatio-temporal proximity and the characteristics of moving objects. The scheme predicts the extendible MBB of nodes of index through the prediction of moving object, and creates a parallel trajectory index. The experimental evaluation shows that the proposed schemes give us the performance improvement by 15%. This result makes an improvement of performance by 50% per one disk.

  • PDF

Car-following Motion Planning for Autonomous Vehicles in Multi-lane Environments (자율주행 차량의 다 차선 환경 내 차량 추종 경로 계획)

  • Seo, Changpil;Yi, Kyoungsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.3
    • /
    • pp.30-36
    • /
    • 2019
  • This paper suggests a car-following algorithm for urban environment, with multiple target candidates. Until now, advanced driver assistant systems (ADASs) and self-driving technologies have been researched to cope with diverse possible scenarios. Among them, car-following driving has been formed the groundwork of autonomous vehicle for its integrity and flexibility to other modes such as smart cruise system (SCC) and platooning. Although the field has a rich history, most researches has been focused on the shape of target trajectory, such as the order of interpolated polynomial, in simple single-lane situation. However, to introduce the car-following mode in urban environment, realistic situation should be reflected: multi-lane road, target's unstable driving tendency, obstacles. Therefore, the suggested car-following system includes both in-lane preceding vehicle and other factors such as side-lane targets. The algorithm is comprised of three parts: path candidate generation and optimal trajectory selection. In the first part, initial guesses of desired paths are calculated as polynomial function connecting host vehicle's state and vicinal vehicle's predicted future states. In the second part, final target trajectory is selected using quadratic cost function reflecting safeness, control input efficiency, and initial objective such as velocity. Finally, adjusted path and control input are calculated using model predictive control (MPC). The suggested algorithm's performance is verified using off-line simulation using Matlab; the results shows reasonable car-following motion planning.