• 제목/요약/키워드: Trajectory Optimization

검색결과 241건 처리시간 0.035초

운동계획을 위한 입자 군집 최적화를 이용한 시범에 의한 학습의 적응성 향상 (Adaptability Improvement of Learning from Demonstration with Particle Swarm Optimization for Motion Planning)

  • 김정중;이주장
    • 한국산업융합학회 논문집
    • /
    • 제19권4호
    • /
    • pp.167-175
    • /
    • 2016
  • We present a method for improving adaptability of Learning from Demonstration (LfD) strategy by combining the LfD and Particle Swarm Optimization (PSO). A trajectory generated from an LfD is modified with PSO by minimizing a fitness function that considers constraints. Finally, the final trajectory is suitable for a task and adapted for constraints. The effectiveness of the method is shown with a target reaching task with a manipulator in three-dimensional space.

신경망 최적화 회로에 의한 여유자유도를 갖는 로보트의 제어 (Redundant Robot Control by Neural Optimization Networks)

  • 현웅근;서일홍
    • 대한전기학회논문지
    • /
    • 제39권6호
    • /
    • pp.638-648
    • /
    • 1990
  • An effective resolved motion control method of redundant manipulators is proposed to minimize the energy consumption and to increase the dexterity while satisfying the physical actuator constraints. The method employs the neural optimization networks, where the computation of Jacobian matrix is not required. Specifically, end effector movement resulting from each joint differential motion is first separated into orthogonal and tangential components with respect to a given desired trajectory. Then the resolved motion is obtained by neural optimization networks in such a way that 1) linear combination of the orthogonal components should be null 2) linear combination of the tangential components should be the differential length of the desired trajectory, 3) differential joint motion limit is not violated, and 4) weighted sum of the square of each differential joint motion is minimized. Here the weighting factors are controlled by a newly defined joint dexterity measure as the ratio of the tangential and orthogonal components.

  • PDF

Optimal Path Planning for UAVs to Reduce Radar Cross Section

  • Kim, Boo-Sung;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권1호
    • /
    • pp.54-65
    • /
    • 2007
  • Parameter optimization technique is applied to planning UAVs(Unmanned Aerial Vehicles) path under artificial enemy radar threats. The ground enemy radar threats are characterized in terms of RCS(Radar Cross Section) parameter which is a measure of exposure to the radar threats. Mathematical model of the RCS parameter is constructed by a simple mathematical function in the three-dimensional space. The RCS model is directly linked to the UAVs attitude angles in generating a desired trajectory by reducing the RCS parameter. The RCS parameter is explicitly included in a performance index for optimization. The resultant UAVs trajectory satisfies geometrical boundary conditions while minimizing a weighted combination of the flight time and the measure of ground radar threat expressed in RCS.

Cooperative Path Planning of Dynamical Multi-Agent Systems Using Differential Flatness Approach

  • Lian, Feng-Li
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권3호
    • /
    • pp.401-412
    • /
    • 2008
  • This paper discusses a design methodology of cooperative path planning for dynamical multi-agent systems with spatial and temporal constraints. The cooperative behavior of the multi-agent systems is specified in terms of the objective function in an optimization formulation. The path of achieving cooperative tasks is then generated by the optimization formulation constructed based on a differential flatness approach. Three scenarios of multi-agent tasking are proposed at the cooperative task planning framework. Given agent dynamics, both spatial and temporal constraints are considered in the path planning. The path planning algorithm first finds trajectory curves in a lower-dimensional space and then parameterizes the curves by a set of B-spline representations. The coefficients of the B-spline curves are further solved by a sequential quadratic programming solver to achieve the optimization objective and satisfy these constraints. Finally, several illustrative examples of cooperative path/task planning are presented.

최적화 기법인 mDEAS의 개발 및 휴머노이드 이족보행 시 최적 관절궤적 생성에의 적용 (Development of Modular DEAS (mDEAS) and its Application to Optimal Trajectory Generation of Biped Walking)

  • 김은숙;김조환;김종욱
    • 전기학회논문지
    • /
    • 제58권2호
    • /
    • pp.382-390
    • /
    • 2009
  • This paper newly proposes a modular type dynamic encoding algorithm for searches (DEAS) which partitions the whole parameters into several modules and carries out exhaustive DEAS for each module. uDEAS is used to measure parameter sensitivities to the cost function, and the variables whose sensitivities are similar are grouped to make a module. The proposed optimization method is applied to optimal trajectory generation for biped walking of a humanoid. and the optimization result is compared with those of the former versions of DEAS.

이족보행로봇의 걸음세 변화에 관한 최적화 연구 (A Study on the Gait Optimization of a Biped Robot)

  • 노경곤;김진걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2405-2407
    • /
    • 2003
  • This study deals with the gait optimization of via points on biped robot. ZMP(Zero Moment Point) is most important index in a biped robot's dynamic walking stability. To stable walking of a biped robot, legs's trajectory and a desired ZMP trajectory is required, balancing weight's movement is solved by FDM(Finite Difference Method). In this study, optimal index is defined to dynamically static walking of a biped robot, and optimization of via points is applied by GA(Genetic Algorithm).

  • PDF

Optimal battery selection for hybrid rocket engine

  • Filippo, Masseni
    • Advances in aircraft and spacecraft science
    • /
    • 제9권5호
    • /
    • pp.401-414
    • /
    • 2022
  • In the present paper, the optimal selection of batteries for an electric pump-fed hybrid rocket engine is analyzed. A two-stage Mars Ascent Vehicle, suitable for the Mars Sample Return Mission, is considered as test case. A single engine is employed in the second stage, whereas the first stage uses a cluster of two engines. The initial mass of the launcher is equal to 500 kg and the same hybrid rocket engine is considered for both stages. Ragone plot-based correlations are embedded in the optimization process in order to chose the optimal values of specific energy and specific power, which minimize the battery mass ad hoc for the optimized engine design and ascent trajectory. Results show that a payload close to 100 kg is achievable considering the current commercial battery technology.

경로 최적화 알고리즘을 이용한 3차원 차량 충돌 시뮬레이션 (Vehicle Crash Simulation using Trajectory Optimization)

  • 성진욱;고승욱;권태수
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제21권5호
    • /
    • pp.11-19
    • /
    • 2015
  • 본 논문은 실제 블랙박스 영상을 통해 추적한 차량의 실제 경로 또는 사용자가 UI를 통해 그린 차량의 이동 경로를 이용하여 사실적인 3차원 차량 충돌 장면을 물리 시뮬레이션을 통해 생성하는 알고리즘을 제안한다. 시뮬레이션에 사용될 차량의 3차원 경로의 획득, 물리 기반 시뮬레이터 상에서 사용자가 원하는 경로대로 3차원 차량 모델을 적은 오차로 제어하는 경로 추적 알고리즘, 그리고 남아있는 오차를 보다 더 줄여주는 경로 최적화 알고리즘을 조합하여 사용자의 의도에 맞는 정확한 경로에서의 차량 충돌 장면을 재현하도록 도와준다. 또한 차량 충돌로 인한 차체의 변형을 차량 모델 골격의 세분화를 통하여 실시간으로 시뮬레이션 하여 실제 교통사고 시의 차량의 충돌 장면이 최대한 가상공간에서 사실적으로 재현되도록 한다.

이동 로봇을 위한 실시간 충돌 회피 궤적 계획과 제어 (A Real-Time Collision-Free Trajectory Planning and Control for a Car-Like Mobile Robot)

  • 이수영;이석한;홍예선
    • 제어로봇시스템학회논문지
    • /
    • 제5권1호
    • /
    • pp.105-114
    • /
    • 1999
  • By using the conceptual impedance and the elasticity of a serial chain of spring-damper system, a real-time collision-free trajectory generation algorithm is proposed. The reference points on a trajectory connected by the spring-damper system have a mechanism for self-Position adjustment to avoid a collision by the impedance, and the local adjustment of each reference point is propagated through the elasticity to a real robot at the end of the spring-damper system. As a result, the overall trajectory consisting of the reference points becomes free of collision with environmental obstacles and efficient having the shortest distance as possible. In this process, the reference points connected by the spring-damper system take role of virtual robot as global guidance for a real robot, and a cooperative optimization is carried out by the system of virtual robots. A control algorithm is proposed to implement the impedance for a car-like mobile robot.

  • PDF

Fuzzy sliding-mode control of a human arm in the sagittal plane with optimal trajectory

  • Ardakani, Fateme Fotouhi;Vatankhah, Ramin;Sharifi, Mojtaba
    • ETRI Journal
    • /
    • 제40권5호
    • /
    • pp.653-663
    • /
    • 2018
  • Patients with spinal cord injuries cannot move their limbs using their intact muscles. A suitable controller can be used to move their arms by employing the functional electrical stimulation method. In this article, a fuzzy exponential sliding-mode controller is designed to move a musculoskeletal human arm model to track an optimal trajectory in the sagittal plane. This optimal arm trajectory is obtained by developing a policy for the central nervous system. In order to specify the optimal trajectory between two points, two dynamic and static optimal criteria are applied simultaneously. The first dynamic objective function is defined to minimize the joint torques, and the second static optimization is offered to minimize the muscle forces at each moment. In addition, fuzzy logic is used to tune the sliding-surface parameter to enable an appropriate tracking performance. Simulation results are evaluated and compared with experimental data for upward and downward movements of the human arm.