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Patients with spinal cord injuries cannot move their limbs using their intact mus-
cles. A suitable controller can be used to move their arms by employing the func-
tional electrical stimulation method. In this article, a fuzzy exponential sliding-
mode controller is designed to move a musculoskeletal human arm model to track
an optimal trajectory in the sagittal plane. This optimal arm trajectory is obtained
by developing a policy for the central nervous system. In order to specify the
optimal trajectory between two points, two dynamic and static optimal criteria are
applied simultaneously. The first dynamic objective function is defined to mini-
mize the joint torques, and the second static optimization is offered to minimize
the muscle forces at each moment. In addition, fuzzy logic is used to tune the
sliding-surface parameter to enable an appropriate tracking performance. Simula-

tion results are evaluated and compared with experimental data for upward and
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1 | INTRODUCTION

Intact human arms can perform common movements that
enable them to pick up and put down objects, lift an object to
put on a shelf, wave, and so on. These tasks are applied in
the sagittal plane immediately without considering the trajec-
tories between the initial and final points of their movements.
In fact, the central nervous system (CNS) predicts these tra-
jectories using the large amount of information that is
obtained from the environment and the body feedback sig-
nals. For example, this information can be the initial and
final points of the arm movements, the arm velocity, and the
muscles’ configurations and forces. In recent decades, many
studies have aimed to investigate the function of the CNS
and predict the human arm trajectories and to understand the
manner in which the muscles are activated. Nevertheless, the
study of the CNS strategy while analyzing the feedback

downward movements of the human arm.

fuzzy SMC controller, human musculoskeletal arm model, optimal arm movement, sagittal plane,

sensory data and producing motor commands to gain the
desired behavior remains an issue to be clarified [1].

The damaged nerves of poststroke patients can be acti-
vated by electrical currents. This method is called functional
electrical stimulation (FES) [2]. In this approach, the magni-
tude of this current is important as it affects the limb move-
ments. Therefore, a proper controller can tune the intensity
of this electrical stimulation to enable it to perform the
desired task. In order to help these patients to move their
arms toward the goal with minimum fatigue, the optimal tra-
jectory of the human limb can be investigated.

The optimization approach in the field of biomechanics is
a suitable method of predicting the CNS policy [3-5]. For
this purpose, different biological objective functions can be
expressed. The minimum-jerk criterion was used to optimize
the hand with 1 and 2 degrees of freedom (DOF) in [6,7].
Minimizing the rate of the joint torque was proposed in order
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to predict the 2 DOF human arm motions [8,9]. The mini-
mum-acceleration criterion was also used to predict the arm-
reaching movements [10]. In [11], the arm trajectory in the
sagittal plane was evaluated by minimizing metabolic energy
costs for the human arm model using uniarticular and biartic-
ular muscles. Moreover, an approximate optimal feedback
control (OFC) was considered to simulate the pattern of limb
stiffness for the musculoskeletal arm model [12]. In [13], the
muscle activation effort and metabolic energy were consid-
ered as 2 time-integral objective functions to predict a peri-
odic forearm motion. In addition, the linear-quadratic-
Gaussian (LQG) method was considered as an optimal con-
trol for the two-DOF arm model [14]. A physiological objec-
tive function for minimizing energy
expenditure was expressed in order to analyze human arm
movement in crank-rotation tasks [15]. In [16], the optimal
arm trajectory was found for arm-reaching movements using
an optimal torque control method based on arm dynamics. In
addition, the quadratic function of muscle stresses plus the
total movement duration was proposed as an objective func-
tion to investigate the optimal performance and to predict the
optimal trajectory of a planar human-like musculoskeletal
arm model by considering the joint and muscle constraints
[17,18]. In our proposed objective functions, torques and
muscle forces are minimized. These objective functions are
defined according to a comparison of related works in the
horizontal plane. The results of these works with body exper-
iments indicate that these objective functions can predict the
CNS policy appropriately.

Many control strategies have been proposed to under-
stand the dynamics of human arm models. An iterative
learning control method was studied in [19] to acquire the
adequate internal force for nonlinear muscle dynamics in a
2-DOF arm model. An adaptive optimal neuro-fuzzy con-
troller was expressed in [20] for a multi-input multi-output
(MIMO) musculoskeletal human arm model with six mus-
cles. In [21], an FES controller was developed to restitute
the ability for paralyzed people to perform functional inter-
action tasks. In addition, for a planar arm actuated by
pneumatic muscle (PM) actuators, multiple-input sliding-
mode techniques were applied [22]. In [23], the modified
sliding mode with exponential reaching law (mSMERL)
was presented to control the nonlinear dynamics of a 7-
DOF exoskeleton arm. In [24], the exponential sliding-
mode controller was investigated for a musculoskeletal
human arm model in the presence of gravitational effects.
Chattering is a major issue involving the use of a sliding-
mode control (SMC) strategy for dynamical
because it damages the mechanical components.

To minimize the chattering issue, different methods were
proposed, such as replacing the sign function with saturation
[25] or a continuous hyperbolic tangent function [26], apply-
ing Quasi-SMC [27] and fuzzy mathematics [28].

the metabolic

systems

Accordingly, the combination of an SMC algorithm and
fuzzy logic developed for robot manipulators was investi-
gated in [28]. In addition, a fuzzy approximation-based adap-
tive SMC was
underactuated systems [29]. Therefore, the SMC approach
has been utilized for many dynamic systems owing to its
simplicity, instant response, appropriate transient perfor-
mance, and insensitivity to parametric changes and uncer-
tainties within the system. Furthermore, in the authors’
previous work, the appropriate performance and instant
response of this controller were represented and investigated.
Based on its advantages, the fuzzy exponential sliding-mode
control (FESMC) was employed in this work. A fuzzy logic
was also used to tune the sliding-surface parameter such that
it has a rapid response.

In this research, two dynamic and static optimal criteria
are proposed in parallel to minimize the muscle fatigue in
the sagittal plane for a musculoskeletal human arm model.
In this plane, the gravitational force affects the dynamic
equation and the optimal response. The first dynamic
objective function is defined to minimize the joint torques,
and the second static optimization is defined to minimize
the muscle forces from the obtained optimal torques at each
moment. These parallel optimizations are proposed to make
the results closer to real human arm trajectories.

The paper is organized as follows. The kinematics and
dynamics of the 2-DOF musculoskeletal human arm model
are presented in Section 2. The control scheme, which
includes the fuzzy exponential sliding-mode controller and
two optimal criteria are designed in Section 3. Section 4
presents the simulation results and their evaluations.
Finally, the conclusion is given in Section 5.

considered for uncertain nonlinear

2 | DYNAMICS OF MUSCULOSKELETAL
HUMAN ARM MODEL

The 2-DOF musculoskeletal human arm model that is pro-
posed in this study has an upper arm and forearm seg-
ments, two joints, and six muscles. The kinematics of the
model is shown in Figure 1. The model simulates the pla-
nar motion of the human upper-limb in the sagittal (verti-
cal) plane. In this plane, the shoulder and elbow have their
flexion-extension movements. The model contains six mus-
cles, namely the anterior and posterior deltoid (/y, I,), bra-
chialis (/3), lateral and long head of the triceps (l4, Is), and
long head of the biceps (ls). These muscles can only cause
tensile forces that actuate the shoulder and elbow joints.
The overall movements of the system are assumed in the
sagittal plane so that the gravity affects the arm's
movements. The shoulder angle is within the range of
—60° to 180° and the elbow angle is within the range of
0° to 170°. As shown in Figure 1, the long head of the
triceps and long head of the biceps are biarticular, and the
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FIGURE 1 Two-degree of freedom musculoskeletal arm model
in the sagittal plane with two links and six muscles

other muscles are monoarticular. In addition, the muscles’
moment arms vary according to the joint angles.

The physical parameters and variables were obtained
from related works. The physiological cross-sectional area
(PCSA) for each muscle was obtained from [30,31]. The
muscle's configuration and the position of their attachments
were obtained from [32,33], while the length, mass, and
inertia of the upper arm and forearm segments are consid-
ered the same as those in [11].

2.1 | Kinematics of muscle-joint space

The distances between the insertion points of the muscles
are expressed as the lengths of the muscles. The relations
between these lengths /; and the joint angles 6; are formu-
lated as follows:

L= [l b, 13,1y, s, 1)

[ [(A2 + As cos(01) — Az sin(6)))* + (A1 — Agsin(6)) — Az cos(6)))’]
[(By — By cos(61) — By sin(6,))> + (B; — By sin(6;) + B; cos(6;))?]
[(Ca + Cycos(6) — (62))> + (€ — Cysin(6y) — Cs cos(62))*)
[(Dy + Dy cos(6;) — D3 sin(62))? + (Dy — Dy sin(6) — D3 cos(ez))2]%

2 3
2 1

( Cssin
(

1
(Er + E4cos(0) + 05) — Essin(0) + 62) + L, cos(6’1))2 :
+(E] —E4 sin(91 + 92) — E3 COS(H] + 92) — L sin(91))2

1
(F2 4 Facos(0) + 05) — F3sin(0) + 62) + L, cos(&l))2 :
+(F1 —Fy sin(91 + 92) —F; COS(H] + 92) — L sin(91))2

@

TABLE 1 Parameters of Figure 1 (muscle locations)

Muscle 1 Muscle 2 Muscle 3

A =1.18 B, =134 C =144
Ay =312 B, =221 C, =4.63
Az =213 B; =292 C; =0.57
Ay = 1237 B, =10.85 Cc,=18.13

where the parameters A;, B;, C;, D;, E;, and F; i = 1, 2, 3,
and 4) are represented in Figure 1. The magnitudes of these
parameters are presented in Table 1.

Taking the first derivative of (1) with respect to time yields:

i=-J(0)", )

where J(0)" € R®*? is a Jacobian matrix that relates the
joint angular velocity 0eR?) to the muscle contractile
velocity (1eR%).

From the principle of virtual work, the relation between
the joint torques T = [r; Tz]T € R? and tensile forces of the
muscles £ = [f; /> 3 f1 5 fs]" € R® can be obtained as:

T©=J(O)f. 3)

2.2 | Dynamics of musculoskeletal arm model
in sagittal plane

The dynamics of 2-DOF musculoskeletal arm models can
be described in joint space by Lagrange's equation of
motion as follows:

M(0)0 +C(0,0) +G(0) =7 @)

where 0 € ‘.Rz, 0c ‘.Rz, 0 R? are the angular accelerations,
velocities, and positions of the joints, respectively.
M(8) € R**? is the inertia matrix, which is symmetric and
positive definite, C(0,0) € R>*! is a Coriolis and centrifu-
gal and friction torques matrix, and G(0) € R**! is a grav-
ity vector. For the 2-link model in the sagittal plane, as
shown in Figure 1, these matrices can be obtained as:

My, M12:| )

M@%:bh v

My = miLg, + I +my(Ly, + LY) + I + 2myLi Ly, cos(6s),
My, =My = I’I’QLzz + 1+ }112L1ng COS(Gz),
My = m2L§2 + b,

—m2L1Lg2(29192 + 9%) sin(&z) + Clél

C(0,0) = 72 )
( ) |: mzL]nge% s1n(6’2) + 0,

]7 (©6)

GO — (mngl + mle)g Sil‘l(@l) + l/l/lgng2 sin(91 + 92)
magLg, sin(91 + 92) ’

@)

Muscle 4 Muscle 5 Muscle 6
D, =142 E, =278 F, =3.65
D, =1.10 E, =1.53 F, =1.15
D; =042 E; =0.11 F;=0.17
D, =2527 E,=5.19 F, =172
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where ¢, and ¢, are the viscous friction coefficients in the
shoulder and elbow joints, respectively. m;, I;, L;, and Lg;
(i=1, 2) are the mass, moment of inertia, length, and
mass center position of the upper arm and forearm seg-
ments, respectively. g is the gravitational acceleration.

According to the kinematics of muscle-joint space (Sec-
tion 2.1), the joints torques are expressed in (3). Thus,
Equation (4) can be rewritten as:

M(0)0 + C(6,0) + G(0) = J(O)f. (8)

3 | CONTROL SCHEME

3.1 | Fuzzy exponential sliding-mode control

In this section, the fuzzy exponential sliding-mode con-
troller is designed to track the arm trajectory of the muscu-
loskeletal human arm model in the sagittal plane. In
Section 3.2, the optimal arm trajectory in this plane was
obtained. Therefore, individuals with spinal cord injuries
can move their arms between two points on the optimal
trajectory that “normal” individuals move their arms on.

For this purpose, first, the exponential sliding-mode
controller is expressed, and then the fuzzy logic was used
to tune the sliding-surface parameter.

3.1.1. | Exponential sliding-mode controller

The dynamic behavior of musculoskeletal human arm
model in the sagittal plane was expressed in (4). Now, 6
should be extracted as follows in order to perform this con-
troller scheme.

0=M"(0)(t—C(6,0) - G(9)). )

Because M(60) is a symmetric and positive definite matrix,
M~'(0) always exists. The first step in the design of the slid-
ing-mode controller is to define the sliding surface. These
sliding (switching) surfaces are a function of the tracking
error, where the tracking error is expressed as follow:

e=0-0, (10)

6, is the desired path, which in this article, is the optimal
trajectory of the human arm model that will be obtained in
the next section. The sliding surface is defined as:

S=le+e. (11)

Owing to the first-order differential Equation (11), when
the system states slide along the line S =0, e and é con-
verge to zero. In addition, A represents the convergence
rate.

In order to satisfy the Lyapunov stability, the Lyapunov
candidate for this model is considered as:

1
E= 5RTR (12)

where R is a vector of two sliding surfaces
R =[A1e; + €1 Aes + éz]z). E is a non-negative and contin-
uous function that satisfies the first condition of the Lyapunov
stability. In order to investigate the second condition of the Lya-
punov stability, the first derivation of E should be calculated

E=R'R. (13)

To satisfy the system stability, £ should be negative
definite. Therefore, R is usually defined as given below,
where K = diag(K;, K5) is positive.

R=—Ksgn(R) (i=1,2). (14)

Because the sign function is a discontinuous function, we
may experience the undesirable phenomenon of oscillations
near the sliding surface having a finite frequency and ampli-
tude, which is known as “chattering.” To reduce the damage
caused by this phenomenon, a continuous function such as the
saturation can be used [25]. A boundary layer (8 = [, 52]T)
is defined on the neighborhood of each sliding surface, so that
the convergence of the system remains between this boundary
layer [34]. Therefore, R is considered as:

R = Ksat (%). (15)

However, when R is defined as (15), the tracking per-
formance of the system is negatively affected. Therefore,
the K; coefficient is expressed as an exponential term that
adapts to the variations of the sliding function. Therefore,
the system is able to tune between reducing the chattering
phenomenon and improving the tracking performance [23].
Finally, R is rewritten as:

R = K(S)sat(%) (16)

where K(S) = diag(K,(S}), K»(S,)).
Ki(S;) is defined as:
Soi + (1 — o;)eaulsil”

Ki(S:) 17)
where k; is a discontinuous controller gain.

In addition, 0 < 6p; < 1, a; > 0 and P; > 0.

Now, to check the stability analysis, the derivative of
the Lyapunov function is rewritten as:

E = —RTsat (%) K(R) (18)

E is always negative because the term R”sat(R/5) is obvi-
ously positive. Therefore, the stability of the system with
the proposed exponential reaching law is fulfilled.
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3.1.2 | Fuzzy controller for tuning A

In order to amend the performance, such as the smaller
settling time and lower overshoot, the strictly positive
constant A should be tuned in each time step. For the
online tuning of this positive constant with the fuzzy con-
troller, the Mamdani implication and center-average
defuzzifier were used. In addition, e and é are considered
as the input linguistic variables of fuzzy rules. For the
input linguistic variable, the characters NN, N, Z, P, and
PP are considered as negative large, negative, zero, posi-
tive, and positive large, respectively. Furthermore, for the
output linguistic variable, the characters P, PP, and PPP
are considered as positive small, positive medium, and
positive large, respectively. The fuzzy rules table is shown
in Table 2.

For the inputs and output, the triangular membership
functions are considered, as shown in Figure 2. In addition,
the range of linguistic variables for ey, e,,¢é;,é, and 1 are
[-0.4 0], [-0.2 0], [0 3], [0 2], [0 40], respectively.

The overall control scheme is displayed in Figure 3.

3.2 | Two criteria to obtain optimal arm
trajectory

In this section, the optimal trajectory of the musculoskeletal
human arm model in the sagittal plane is obtained. By
tracking this optimal trajectory with the proposed fuzzy
sliding-mode controller, the patients’ arms can be moved in
the sagittal plane as in the arms of normal persons.

The equation of motion for this 2-DOF arm model
should be expressed in state-space form in order to apply
the optimal control strategy. Therefore, the system dynamic
is obtained as:

X1 81 X
3
X2 82 N
. 4
X3 = |8 = _
M~ (%) (—C(x2,%3,x3) = G(x1,%2) + J(x1, :)f)
X4 84 <
5
Xs 85

19

where x; =0y, x, = 6,, x3 = 91, X4 = 92, and x5 is the
extra state that is defined to consider the constraints of the

TABLE 2 Fuzzy rules for tuning 1

2

NN N 7z P PP

0.8 1

0.2f i

Degree of membership

-040 -035 -030 -025 -0.20 -0.15 -0.10 -0.05 0
e

Cl

0.4 1

0.21 b

Degree of membership

FIGURE 2 Samples of membership functions for inputs (A) and
output (B)

D86 + GO)

S
E:] A A
v
|M(ﬂ)é+D(6,9J +G() =1
Fi
» 7 et 9
ru‘!
~

g > ;

FIGURE 3 Block diagram of the control scheme

joint range of motions. Accordingly, the vector of states is
expressed as X = [x], Xp, X3, X4, X5] with five considered
states. In addition, g3 and g4 are obtained from the
dynamic equation as below:

e\é NN N v/ P PP
NN P P P P P
P P P p pp
ppP pp P p P
pp p pp pp P
pp pp pp pp p P

[&%] _ [?1] — M (0)(—Claaxn,xa) — Gl xa) + Jx1, 220,

84 0,
(20)

The dynamics of the additional state variable is
expressed according to the variational approach of optimal
control to satisfy the state constraints. Therefore, the state
constraints should first be expressed, after which g5 can be
defined.
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For this nonlinear musculoskeletal arm model, the state
constraints are the range of the joints’ motions. The ranges
of the shoulder and elbow angles for their flexion-extension
movement in the sagittal plane are between —60 to 180
and 0 to 170, respectively. Therefore, these constraints are
considered as:

mx(0).0] [ x+60
() = 20 = (10 200 e
h4(x(t),t) 145 — x,

Now, the additional variable (state) could be defined with
the following dynamics:

4

%5 = 85 = Rl(x(0), 0P U(=h) (22)
where U(—h;) is a unit Heaviside step function. Equa-
tion (22) states that x5 > 0 for all 7 € [ty, #]. From (21) and
(22), when all of the constraints are within the range of the
joints motion limitation, xs(z) = 0. Now, the additional vari-
able xs(f) can be obtained by integrating xs(z) over time as:

t

xs(1) = / s (1)t + x5 (). 23)
fo

%5(7) must be zero for the entire time because of the fol-

lowing:

1) According to Equation (22), x5(z) > 0 for all times.
2) The boundary conditions for this additional state vari-
able are expressed as xs(#y) = 0 and xs(zp) = 0.

In addition, as mentioned in the previous paragraph,
X5(t) =0 when all of the state constraints are satisfied.
Hence, the state constraints are satisfied automatically by
defining an extra state as in (23).

To minimize the muscle fatigue, the optimal control
scenario was considered. In fact, this controller simulates
the CNS strategy to command the optimal movements to
the human arm. For this purpose, the proposed optimal
controller is considered in two steps. In the first step, the
joint torques were minimized using a quadratic function of
torques as the dynamic objective function. In the next step,
the minimum muscles forces can be obtained using a cubic
function of the muscle stresses as the static objective func-
tion.

3.2.1 | Optimal torques of shoulder and
elbow joints

For the first part of the designed optimal controller, the
quadratic objective function to minimize the torques vector
T = [7y, 75] is expressed as:

1

n= | "L (RiR0) + R () = / S Re(r)dr

-/ ey

0

(24)

where R in this objective function is a diagonal matrix as
below, which allows us to value and distinguish the
torques:

R 0
R_{O Rz]. 25)

The Hamiltonian function for this optimal controller is
proposed because of the variational optimal control
approach [35]. By using (19) and (24), this function can be
expanded as below:

H=g+P'f
1, (26)
=3a Ra + p1x3 + paxa + pafs + pafs + psfs.

The vector of costates p = [p1, P2 P3 Par Psl’ is
obtained from the following differential equations [35]:

. —oH _p. 08, Oga ) Ogs
P1 22 p3 0x) P4 Ox) ps 0x)
. _OH 0g 0g. og
P2 01y —P3%y, — P4, — P55,
’ = | —< | = g3 0,
p3 s —P1—P3ge —Page |- 27
Pa — OH g3 g4
. Oy P2~ P35y, — Py,
pPs _OH 0
Oxs

From (26), it is realized that the Hamiltonian is not a
function of this additional state variable x5 because the added
state variable does not apparently exist in the state-space
dynamics (19). Therefore, the last costate ps is constant [35].

Based on the principle of optimal control, the optimal
joint torques were obtained by solving the following Equa-
tions [35]:

oL, 08 O
8[-1 ! R1 p38T1 p4611
9 0y — (28)
O _ (0, 08

= R2 ps 8‘[2 P4 6‘[2 '

After the optimal torques of the shoulder and elbow
joints were obtained at each moment, the optimal muscle
forces should be determined using the second objective
function and the Lagrangian method, which are explained
in the next section.

3.2.2 | Optimal muscle forces

In this section, the optimal muscle forces are obtained at
each moment using the instantaneous optimal joint torques
in that moment. For this purpose, because of limitations in
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the strengths of some muscles, the Lagrange method can
be used for static optimization. In fact, the Lagrangian
method is a suitable solution for finding the extrema of a
mathematical function with some limitations. To minimize
fatigue or the forces applied to the muscles, the following
cubic cost function is considered:

L& f0 Y
h=3 (El (PCSA,-) ) ' 2

Because PCSA; is the physiological cross-sectional area
of the muscle i, a;(¢)\PCSA; represents the muscle stress of
that muscle. It should be noted that muscle forces in the
musculoskeletal system should always be positive. On the
other hand, the muscle force for each muscle should not
exceed the intolerance force value of that muscle. There-
fore, the following constraint is considered for muscle
forces in the Lagrange method:

0 <fi < omaxPCSA; (30)

where 6,,,x is the maximum muscle stress value. As it was
expressed, the muscle forces are related to joints torques
by (3). Therefore, in order to obtain optimal muscle forces,
the Lagrange function is defined as follows:

L=J,+Mzt—Jf) (1)

where the vector £(7) = [fi(2), /(D). ..., fs()]" consists mus-
cle forces and the vector A =[1; 4] has two elements
that are called Lagrangian coefficients. The number of ele-
ments is the same as the number of Lagrangian constraint
equations (Equation (3)).

By adding these two variables (1, 4,) with six variables
related to the force of muscles (fi, f>, f3, fa» f5, fo) in the
Lagrange function, there are eight variables in this opti-
mization. Based on the Lagrange method, the optimal val-
ues of these variables are obtained by solving the 8
following equations:

%:0 (j=1,2),
5[14 (32)
8(1,-:0 (i=1,...,6).

After solving the above equations, the optimal muscle
forces are obtained. Thus, the optimal muscle activation
can be recognized for any point-to-point movement. In fact,
the function of the CNS can be investigated for these
movements.

Now, this optimal trajectory of the proposed muscu-
loskeletal arm model in the sagittal plane is assumed as a
desired path of the fuzzy exponential sliding-mode con-
troller presented in Section 3.1. Therefore, the patients’
arms track the optimal point-to-point tasks in the sagittal
plane.

ETRI JournaWILEY-—
4 | RESULTS

In this section, the simulation results are presented to eval-
uvate the proposed method. The simulation results are
expressed in three parts. First, the optimal human arm
movement for arbitrary initial and final points is shown.
Second, the arm's optimal trajectory is examined consider-
ing the experimental results. Finally, the nonlinear con-
troller (FESMC) is implemented to move the arm in the
manner similar to the desired optimal trajectory of the
human arm, which is obtained from the optimal control cri-
terion.

The forward and inverse kinematics of the considered
two-link arm model in the sagittal plane were used in the
simulation results. The position of the end effector in the
Cartesian coordinate can be obtained by joint angles (6,
6,) as follows:

x| | Lysin() + Ly sin(6, + 6s) (33)
y| | —Licos(6) — Lycos(6) + 6,) |’

In addition, the inverse kinematics can be written as:

0|

0,
where r = /x> +y? and L; (j =1, 2) are the lengths of
the upper arm and forearm segments, respectively.

P+ -1
arctan2(x, —y) — arccos (Tﬂ

L2—13—1*
arccos( LTV )

(34)

4.1 | Simulation results of optimal criteria

To investigate the human-arm optimal point-to-point move-
ments in the sagittal plane, the arbitrary initial and final
states are considered as x(0) = [20°, 30°, 0, 0] and x(z) =
[60°, 80°, 0, 0], respectively.

In addition, the boundary conditions and different arm
and muscle parameters are mentioned in the previous sec-
tions. The final time is assumed to be 0.8 s, which is the
average time of normal arm movements in the sagittal
plane [36]. In the R matrix, the elements are considered to
have equal value (R; = R, = 100,000).

Figure 4 shows the resulting optimal trajectory for the
states (x; =0y, x, = 05, x3 = 0, x4 = 92). The lines and
dashed lines represent the shoulder and elbow joints opti-
mal trajectories and their derivatives (bell-shaped trajec-
tory), respectively.

The two-dimensional (2D) optimal arm trajectory in
Cartesian (x-y) coordinates between the initial and final
points are demonstrated in Figure 5. As seen in the figure,
this trajectory becomes a curved path by using the
explained optimal criterion. In fact, the CNS also guides
the segments to move along the curved paths in order to
minimize the joint torques and muscle forces, and this is
examined in the next section.
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FIGURE 4 Optimal trajectories of arm point-to-point movement
for joints and their derivatives in 0.8 seconds (states)
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FIGURE 5 Obtained optimal trajectory of arm movement in the
sagittal plane between two specified points in Cartesian coordinates

Figure 6 illustrates the optimal muscle forces for the six
considered muscles that were obtained for this criterion.
According to the figure, all of the muscle forces are positive
(tensile). In addition, it can be seen that all muscles are acti-
vated in a substitution manner, which means that when one
is activated, its pair is not activated and the magnitude of its
force is zero. For example, in this arbitrary point-to-point
movement when the anterior deltoid muscle (blue line) is
activated, the posterior deltoid (red dash line) has a zero
force. At about the middle of the trajectory, this activation is
switched between these paired muscles. However, because
of existing excessive muscle actuators, the lateral triceps
muscle is not actuated in this movement, and its pair (bra-
chialis muscle) is activated at all times for this movement.

120 T
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100 . === Muscle 3: brachialis 5
\
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FIGURE 6 Optimal muscle forces for six muscles of proposed
human musculoskeletal human arm model
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FIGURE 7

total duration

Input torques to shoulder and elbow joints for the

The input torques for shoulder and elbow joints are pre-
sented in Figure 7. By comparing Figure 6 and Figure 7, it
is observed that the muscles that are activated in the initial
phase of the movement (muscles 1 and 5) are agonistic
muscles, which generate torques in the same direction of
movement (positive torque). In addition, the muscles that
are activated in the final phase of the movement (muscles
2 and 6) are antagonistic muscles, which generate torques
in the direction opposite to the movement (negative tor-
que).
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FIGURE 8 Comparison of simulation results and experimental
results

4.2 | Evaluation of optimal trajectory results
using experimental results

In this section, the experimental results for point-to-point
human arm trajectory in the sagittal plane are obtained
from Ref. [36]. Two points, namely 4 and 8, are considered
as the initial and final points of the optimal simulation,
respectively. A comparison of the results is shown in Fig-
ure 8 for upward and downward arm movements.

As seen in the figure, the upward trajectory (red line) is
more curved than the downward trajectory. In fact, the
downward motion is more convenient in the sagittal plane
because of the gravitational effect. For upward movements,
the arm should overcome the gravitational force. Therefore,

| |~ Desired optimal trajectory

| [— Controlled x;

x1 (rad)

0 0.2 0.4 0.6 0.8
Time (s)

FIGURE 9 Response of fuzzy exponential sliding-mode control
for the first state (shoulder joint)

— Desired optimal trajectory
—— Controlled x,

x, (rad)

02

0 0.2 0.4 0.6 0.8
Time (s)

FIGURE 10 Response of fuzzy exponential sliding-mode control
for the second state (elbow joint)

the joint torques become larger and the arm trajectory is
more curved to satisfy the optimal criterion.

4.3 | Tracking results

The fuzzy exponential sliding-mode controller is applied
for the proposed human arm model to track the optimal tra-
jectory that was obtained in Section 4.1 of the results. The
sliding-mode parameters were obtained from the exponen-
tial assumption criterion and fuzzy logic, which were
explained previously. The tracking results for the shoulder
and elbow joints are presented in Figure 9 and Figure 10,
respectively. The suitable performance of this controller
was investigated in our previous work [24].

5 | CONCLUSION

In this article, a 2-DOF musculoskeletal human arm model
with six muscles was considered in the sagittal plane. In
order to investigate the human arm trajectory, which is
controlled by the CNS, two parallel optimal criteria were
proposed for arm movements between two points. These
two optimal criteria are the minimum muscle forces and
the minimum joints torques. The optimal arm trajectory
was obtained as the curve path, which is similar to experi-
mental human arm results. The upward and downward arm
trajectories are different from each other because in the
sagittal plane, a gravitational force affects the arm move-
ments. In addition, the optimal muscle forces were
obtained, and it was seen that the biarticular, monoarticular,
antagonistic, and agonistic muscles could be recognized
from the results. The fuzzy exponential sliding-mode
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controller was designed to control the shoulder and elbow
joints in order to achieve their optimal trajectories. There-
fore, patients with spinal cord injuries can move their arms
in a similar optimal manner as an intact human arm.
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