• Title/Summary/Keyword: Training intelligence

Search Result 782, Processing Time 0.026 seconds

Variable length Chromosomes in Genetic Algorithms for Modeling the Class Boundaries

  • Bandyopadhyay, Sanghamitra;Pal, Sankar K.;Murthy, C.A.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.634-639
    • /
    • 1998
  • A methodology based on the concept of variable string length GA(VGA) is developed for determining automatically the number of hyperplanes and their appropriate arrangement for modeling the class boundaries of a given training data set in RN. The genetic operators and fitness functionare newly defined to take care of the variability in chromosome length. Experimental results on different artificial and real life data sets are provided.

  • PDF

Teacher Training Program and Analysis of Teacher's Demands to Strengthen Artificial Intelligence Education (인공지능교육 역량 강화를 위한 교원 연수 프로그램과 교사 요구분석)

  • Jeon, In-Seong;Jun, Soo-Jin;Song, Ki-Sang
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.4
    • /
    • pp.279-289
    • /
    • 2020
  • The purpose of this study is to apply the training program for teachers to strengthen the competence of artificial intelligence education in primary and secondary school teachers and to analyze its effectiveness and analyze teachers' demands for artificial intelligence education to provide basic research data. The referenced training program was designed based on the ADDIE model by selecting the educational contents based on the five core elements of AI, and teachers from the G Metropolitan Office of Education and the AI Education Research Association collaborated to develop the program. The effectiveness of the developed program and questionnaire of teacher needs analysis for AI teaching were examined for content validity. As a result of the training conducted by applying the developed program, satisfaction with each curriculum of the training and the possibility of application to the field were highly evaluated. It was found that teachers consider the need of teaching unplugged activities for AI education and basic AI experiences in elementary school level, and AI education contents including block programming languages and physical computing activities are needed to teach in middle school level.

Artificial neural network for predicting nuclear power plant dynamic behaviors

  • El-Sefy, M.;Yosri, A.;El-Dakhakhni, W.;Nagasaki, S.;Wiebe, L.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3275-3285
    • /
    • 2021
  • A Nuclear Power Plant (NPP) is a complex dynamic system-of-systems with highly nonlinear behaviors. In order to control the plant operation under both normal and abnormal conditions, the different systems in NPPs (e.g., the reactor core components, primary and secondary coolant systems) are usually monitored continuously, resulting in very large amounts of data. This situation makes it possible to integrate relevant qualitative and quantitative knowledge with artificial intelligence techniques to provide faster and more accurate behavior predictions, leading to more rapid decisions, based on actual NPP operation data. Data-driven models (DDM) rely on artificial intelligence to learn autonomously based on patterns in data, and they represent alternatives to physics-based models that typically require significant computational resources and might not fully represent the actual operation conditions of an NPP. In this study, a feed-forward backpropagation artificial neural network (ANN) model was trained to simulate the interaction between the reactor core and the primary and secondary coolant systems in a pressurized water reactor. The transients used for model training included perturbations in reactivity, steam valve coefficient, reactor core inlet temperature, and steam generator inlet temperature. Uncertainties of the plant physical parameters and operating conditions were also incorporated in these transients. Eight training functions were adopted during the training stage to develop the most efficient network. The developed ANN model predictions were subsequently tested successfully considering different new transients. Overall, through prompt prediction of NPP behavior under different transients, the study aims at demonstrating the potential of artificial intelligence to empower rapid emergency response planning and risk mitigation strategies.

The Mediating Effect of Emotional Intelligence on the Relationship between Emotional Labor and Psychological Well-being of Clinical Nurses (임상간호사의 감정노동과 심리적 안녕감의 관계에서 감성지능의 매개효과)

  • Kang, Su-Mi;Bae, Sun Hyoung
    • Journal of muscle and joint health
    • /
    • v.22 no.3
    • /
    • pp.185-194
    • /
    • 2015
  • Purpose: The purpose of this study is to determine the mediator or moderator effect of clinical nurses' emotional intelligence on the relationship between the emotional labor and psychological well-being. Methods: Data was collected from 240 nurses in tertiary hospitals located in B city using structured questionnaires. Data was analyzed with descriptive statistics, Pearson's correlation coefficient and hierarchical multiple regression using the SPSS program. Results: Clinical nurses' emotional intelligence had a significant correlation with emotional labor (r=-.13, p=.039) and psychological well-being (r=.52, p<.001). Also, clinical nurses' emotional intelligence showed mediating effects between the emotional labor and psychological well-being. However, emotional intelligence did not show moderating effects. Conclusion: The results of this study show that the clinical nurses' emotional intelligence has an important influence on nurses' emotional labor and psychological well-being. This finding points to the importance of emotional intelligence to increase psychological well-being and suggests that the hospital should develop education and training programs to enhance nurses' emotional intelligence and promote clinical nurses' psychological well-being.

Crop Leaf Disease Identification Using Deep Transfer Learning

  • Changjian Zhou;Yutong Zhang;Wenzhong Zhao
    • Journal of Information Processing Systems
    • /
    • v.20 no.2
    • /
    • pp.149-158
    • /
    • 2024
  • Traditional manual identification of crop leaf diseases is challenging. Owing to the limitations in manpower and resources, it is challenging to explore crop diseases on a large scale. The emergence of artificial intelligence technologies, particularly the extensive application of deep learning technologies, is expected to overcome these challenges and greatly improve the accuracy and efficiency of crop disease identification. Crop leaf disease identification models have been designed and trained using large-scale training data, enabling them to predict different categories of diseases from unlabeled crop leaves. However, these models, which possess strong feature representation capabilities, require substantial training data, and there is often a shortage of such datasets in practical farming scenarios. To address this issue and improve the feature learning abilities of models, this study proposes a deep transfer learning adaptation strategy. The novel proposed method aims to transfer the weights and parameters from pre-trained models in similar large-scale training datasets, such as ImageNet. ImageNet pre-trained weights are adopted and fine-tuned with the features of crop leaf diseases to improve prediction ability. In this study, we collected 16,060 crop leaf disease images, spanning 12 categories, for training. The experimental results demonstrate that an impressive accuracy of 98% is achieved using the proposed method on the transferred ResNet-50 model, thereby confirming the effectiveness of our transfer learning approach.

Deep Neural Network Analysis System by Visualizing Accumulated Weight Changes (누적 가중치 변화의 시각화를 통한 심층 신경망 분석시스템)

  • Taelin Yang;Jinho Park
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.85-92
    • /
    • 2023
  • Recently, interest in artificial intelligence has increased due to the development of artificial intelligence fields such as ChatGPT and self-driving cars. However, there are still many unknown elements in training process of artificial intelligence, so that optimizing the model requires more time and effort than it needs. Therefore, there is a need for a tool or methodology that can analyze the weight changes during the training process of artificial intelligence and help out understatnding those changes. In this research, I propose a visualization system which helps people to understand the accumulated weight changes. The system calculates the weights for each training period to accumulates weight changes and stores accumulated weight changes to plot them in 3D space. This research will allow us to explore different aspect of artificial intelligence learning process, such as understanding how the model get trained and providing us an indicator on which hyperparameters should be changed for better performance. These attempts are expected to explore better in artificial intelligence learning process that is still considered as unknown and contribute to the development and application of artificial intelligence models.

Effects of Family Nursing Practicum Using Role Play on Emotional Intelligence, Communication Ability, and Family Nursing Performance of Nursing Students (역할극을 활용한 가족간호실습교육이 간호학생의 감성지능, 의사소통능력과 가족간호수행능력에 미치는 효과)

  • Park, Eunok
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.19 no.4
    • /
    • pp.656-662
    • /
    • 2013
  • Purpose: This study was to investigate the effects of a family nursing practicum using role play on emotional intelligence, communication ability, and family nursing performance of nursing students. Methods: Role play training was provided to nursing students who took a community health nursing practicum (family nursing practicum). During the course for 2 weeks, participants were given role play practice for four times and a final test using role play at the end of the course. Data were collected from 52 nursing students before and after the family nurse practicum who agreed to participate in this study. Results: The scores of emotional intelligence, communication ability, and family nursing performance at post test were enhanced significantly compared to the scores at pre test. Conclusion: Nursing educators in family nursing can consider role play to improve emotional intelligence and communication ability as well as family nursing performance.

Development of a case-based nursing education program using generative artificial intelligence (생성형 인공지능을 활용한 사례 기반 간호 교육 프로그램 개발)

  • Ahn, Jeonghee;Park, Hye Ok
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.29 no.3
    • /
    • pp.234-246
    • /
    • 2023
  • Purpose: This study aimed to develop a case-based nursing education program using generative artificial intelligence and to assess its usability and applicability in nursing curriculums. Methods: The program was developed by following the five steps of the ADDIE model: analysis, design, development, implementation, and evaluation. A panel of five nursing professors served as experts to implement and evaluate the program. Results: Utilizing ChatGPT, six program modules were designed and developed based on experiential learning theory. The experts' evaluations confirmed that the program was suitable for case-based learning, highly usable, and applicable to nursing education. Conclusion: Generative artificial intelligence was identified as a valuable tool for enhancing the effectiveness of case-based learning. This study provides insights and future directions for integrating generative artificial intelligence into nursing education. Further research should be attempted to implement and evaluate this program with nursing students.

Molecular Property Prediction with Deep-learning and Pretraining Strategy (사전학습 전략과 딥러닝을 활용한 분자의 특성 예측)

  • Lee, Seungbeom;Kim, Jiye;Kim, Dongwoo;Park, Jaesik;Ahn, Sungsoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.63-66
    • /
    • 2022
  • 본 논문에서는 분자의 특성을 정확하게 예측하기 위해 효과적인 사전학습(pretraining) 전략과 트랜스포머(Transformer) 모델을 활용한 방법을 제시한다. 딥러닝을 활용한 분자의 성능을 예측하는 연구는 그동안 레이블이 부족한 분자데이터의 특성에 의해 학습 때 사용된 데이터이외의 분자데이터에 대해 일반화 능력이 떨어지는 어려움을 겪었다. 이 논문에서 제시한 모델은 사전학습(pretraining)을 수행할 때 자기지도학습(self-supervised training)을 사용하여 부족한 레이블에 의한 문제점을 피할 수 있다. 대규모 분자 데이터셋으로부터 학습된 이 모델은 4가지 다운스트림 데이터셋에 대해 모두 우수한 성능을 보여주어 일반화 성능이 뛰어나며 효과적인 분자표현을 얻을 수 있음을 보인다.

  • PDF

Injection of Cultural-based Subjects into Stable Diffusion Image Generative Model

  • Amirah Alharbi;Reem Alluhibi;Maryam Saif;Nada Altalhi;Yara Alharthi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.1-14
    • /
    • 2024
  • While text-to-image models have made remarkable progress in image synthesis, certain models, particularly generative diffusion models, have exhibited a noticeable bias to- wards generating images related to the culture of some developing countries. This paper introduces an empirical investigation aimed at mitigating the bias of image generative model. We achieve this by incorporating symbols representing Saudi culture into a stable diffusion model using the Dreambooth technique. CLIP score metric is used to assess the outcomes in this study. This paper also explores the impact of varying parameters for instance the quantity of training images and the learning rate. The findings reveal a substantial reduction in bias-related concerns and propose an innovative metric for evaluating cultural relevance.