• Title/Summary/Keyword: Training Samples

Search Result 565, Processing Time 0.026 seconds

A Method for Optimizing the Structure of Neural Networks Based on Information Entropy

  • Yuan Hongchun;Xiong Fanlnu;Kei, Bai-Shi
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.30-33
    • /
    • 2001
  • The number of hidden neurons of the feed-forward neural networks is generally decided on the basis of experience. The method usually results in the lack or redundancy of hidden neurons, and causes the shortage of capacity for storing information of learning overmuch. This research proposes a new method for optimizing the number of hidden neurons bases on information entropy, Firstly, an initial neural network with enough hidden neurons should be trained by a set of training samples. Second, the activation values of hidden neurons should be calculated by inputting the training samples that can be identified correctly by the trained neural network. Third, all kinds of partitions should be tried and its information gain should be calculated, and then a decision-tree correctly dividing the whole sample space can be constructed. Finally, the important and related hidden neurons that are included in the tree can be found by searching the whole tree, and other redundant hidden neurons can be deleted. Thus, the number of hidden neurons can be decided. In the case of building a neural network with the best number of hidden units for tea quality evaluation, the proposed method is applied. And the result shows that the method is effective

  • PDF

Lung Area Segmentation in Chest Radiograph Using Neural Network (신경회로망을 이용한 흉부 X-선 영상에서의 폐 영역분할)

  • Kim, Jong-Hyo;Park, Kwang-Suk;Min, Byoung-Goo;Im, Jung-Gi;Han, Man-Cheong;Lee, Choong-Woong
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1990 no.05
    • /
    • pp.33-37
    • /
    • 1990
  • In this paper, a new method for lung area segmentation in chest radiographs has been presented. The movivation of this study is to include fuzzy informations about the relation between the image date structure and the area to be segmented in the segmentation process efficiently. The proposed method approached the segmentation problem in the perspective of pattern classification, using trainable pattern classifier, multi-layer perceptron. Having been trained with 10 samples, this method gives acceptable segmentation results, and also demonstrated the desirable property of giving better results as the training continues with more training samples.

  • PDF

CREATING MULTIPLE CLASSIFIERS FOR THE CLASSIFICATION OF HYPERSPECTRAL DATA;FEATURE SELECTION OR FEATURE EXTRACTION

  • Maghsoudi, Yasser;Rahimzadegan, Majid;Zoej, M.J.Valadan
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.6-10
    • /
    • 2007
  • Classification of hyperspectral images is challenging. A very high dimensional input space requires an exponentially large amount of data to adequately and reliably represent the classes in that space. In other words in order to obtain statistically reliable classification results, the number of necessary training samples increases exponentially as the number of spectral bands increases. However, in many situations, acquisition of the large number of training samples for these high-dimensional datasets may not be so easy. This problem can be overcome by using multiple classifiers. In this paper we compared the effectiveness of two approaches for creating multiple classifiers, feature selection and feature extraction. The methods are based on generating multiple feature subsets by running feature selection or feature extraction algorithm several times, each time for discrimination of one of the classes from the rest. A maximum likelihood classifier is applied on each of the obtained feature subsets and finally a combination scheme was used to combine the outputs of individual classifiers. Experimental results show the effectiveness of feature extraction algorithm for generating multiple classifiers.

  • PDF

Detection and Parameter Estimation for Jitterbug Covert Channel Based on Coefficient of Variation

  • Wang, Hao;Liu, Guangjie;Zhai, Jiangtao;Dai, Yuewei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1927-1943
    • /
    • 2016
  • Jitterbug is a passive network covert timing channel supplying reliable stealthy transmission. It is also the basic manner of some improved covert timing channels designed for higher undetectability. The existing entropy-based detection scheme based on training sample binning may suffer from model mismatching, which results in detection performance deterioration. In this paper, a new detection method based on the feature of Jitterbug covert channel traffic is proposed. A fixed binning strategy without training samples is used to obtain bins distribution feature. Coefficient of variation (CV) is calculated for several sets of selected bins and the weighted mean is used to calculate the final CV value to distinguish Jitterbug from normal traffic. Furthermore, the timing window parameter of Jitterbug is estimated based on the detected traffic. Experimental results show that the proposed detection method can achieve high detection performance even with interference of network jitter, and the parameter estimation method can provide accurate values after accumulating plenty of detected samples.

Hierarchical Regression for Single Image Super Resolution via Clustering and Sparse Representation

  • Qiu, Kang;Yi, Benshun;Li, Weizhong;Huang, Taiqi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2539-2554
    • /
    • 2017
  • Regression-based image super resolution (SR) methods have shown great advantage in time consumption while maintaining similar or improved quality performance compared to other learning-based methods. In this paper, we propose a novel single image SR method based on hierarchical regression to further improve the quality performance. As an improvement to other regression-based methods, we introduce a hierarchical scheme into the process of learning multiple regressors. First, training samples are grouped into different clusters according to their geometry similarity, which generates the structure layer. Then in each cluster, a compact dictionary can be learned by Sparse Coding (SC) method and the training samples can be further grouped by dictionary atoms to form the detail layer. Last, a series of projection matrixes, which anchored to dictionary atoms, can be learned by linear regression. Experiment results show that hierarchical scheme can lead to regression that is more precise. Our method achieves superior high quality results compared with several state-of-the-art methods.

Data Mining-Aided Automatic Landslide Detection Using Airborne Laser Scanning Data in Densely Forested Tropical Areas

  • Mezaal, Mustafa Ridha;Pradhan, Biswajeet
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.45-74
    • /
    • 2018
  • Landslide is a natural hazard that threats lives and properties in many areas around the world. Landslides are difficult to recognize, particularly in rainforest regions. Thus, an accurate, detailed, and updated inventory map is required for landslide susceptibility, hazard, and risk analyses. The inconsistency in the results obtained using different features selection techniques in the literature has highlighted the importance of evaluating these techniques. Thus, in this study, six techniques of features selection were evaluated. Very-high-resolution LiDAR point clouds and orthophotos were acquired simultaneously in a rainforest area of Cameron Highlands, Malaysia by airborne laser scanning (LiDAR). A fuzzy-based segmentation parameter (FbSP optimizer) was used to optimize the segmentation parameters. Training samples were evaluated using a stratified random sampling method and set to 70% training samples. Two machine-learning algorithms, namely, Support Vector Machine (SVM) and Random Forest (RF), were used to evaluate the performance of each features selection algorithm. The overall accuracies of the SVM and RF models revealed that three of the six algorithms exhibited higher ranks in landslide detection. Results indicated that the classification accuracies of the RF classifier were higher than the SVM classifier using either all features or only the optimal features. The proposed techniques performed well in detecting the landslides in a rainforest area of Malaysia, and these techniques can be easily extended to similar regions.

A Novel Kernel SVM Algorithm with Game Theory for Network Intrusion Detection

  • Liu, Yufei;Pi, Dechang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.4043-4060
    • /
    • 2017
  • Network Intrusion Detection (NID), an important topic in the field of information security, can be viewed as a pattern recognition problem. The existing pattern recognition methods can achieve a good performance when the number of training samples is large enough. However, modern network attacks are diverse and constantly updated, and the training samples have much smaller size. Furthermore, to improve the learning ability of SVM, the research of kernel functions mainly focus on the selection, construction and improvement of kernel functions. Nonetheless, in practice, there are no theories to solve the problem of the construction of kernel functions perfectly. In this paper, we effectively integrate the advantages of the radial basis function kernel and the polynomial kernel on the notion of the game theory and propose a novel kernel SVM algorithm with game theory for NID, called GTNID-SVM. The basic idea is to exploit the game theory in NID to get a SVM classifier with better learning ability and generalization performance. To the best of our knowledge, GTNID-SVM is the first algorithm that studies ensemble kernel function with game theory in NID. We conduct empirical studies on the DARPA dataset, and the results demonstrate that the proposed approach is feasible and more effective.

Multiple Classifier System for Activity Recognition

  • Han, Yong-Koo;Lee, Sung-Young;Lee, young-Koo;Lee, Jae-Won
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.11a
    • /
    • pp.439-443
    • /
    • 2007
  • Nowadays, activity recognition becomes a hot topic in context-aware computing. In activity recognition, machine learning techniques have been widely applied to learn the activity models from labeled activity samples. Most of the existing work uses only one learning method for activity learning and is focused on how to effectively utilize the labeled samples by refining the learning method. However, not much attention has been paid to the use of multiple classifiers for boosting the learning performance. In this paper, we use two methods to generate multiple classifiers. In the first method, the basic learning algorithms for each classifier are the same, while the training data is different (ASTD). In the second method, the basic learning algorithms for each classifier are different, while the training data is the same (ADTS). Experimental results indicate that ADTS can effectively improve activity recognition performance, while ASTD cannot achieve any improvement of the performance. We believe that the classifiers in ADTS are more diverse than those in ASTD.

  • PDF

Self-Supervised Long-Short Term Memory Network for Solving Complex Job Shop Scheduling Problem

  • Shao, Xiaorui;Kim, Chang Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2993-3010
    • /
    • 2021
  • The job shop scheduling problem (JSSP) plays a critical role in smart manufacturing, an effective JSSP scheduler could save time cost and increase productivity. Conventional methods are very time-consumption and cannot deal with complicated JSSP instances as it uses one optimal algorithm to solve JSSP. This paper proposes an effective scheduler based on deep learning technology named self-supervised long-short term memory (SS-LSTM) to handle complex JSSP accurately. First, using the optimal method to generate sufficient training samples in small-scale JSSP. SS-LSTM is then applied to extract rich feature representations from generated training samples and decide the next action. In the proposed SS-LSTM, two channels are employed to reflect the full production statues. Specifically, the detailed-level channel records 18 detailed product information while the system-level channel reflects the type of whole system states identified by the k-means algorithm. Moreover, adopting a self-supervised mechanism with LSTM autoencoder to keep high feature extraction capacity simultaneously ensuring the reliable feature representative ability. The authors implemented, trained, and compared the proposed method with the other leading learning-based methods on some complicated JSSP instances. The experimental results have confirmed the effectiveness and priority of the proposed method for solving complex JSSP instances in terms of make-span.

On Optimizing LDA-extentions Using a Pre-Clustering (사전 클러스터링을 이용한 LDA-확장법들의 최적화)

  • Kim, Sang-Woon;Koo, Byum-Yong;Choi, Woo-Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.3
    • /
    • pp.98-107
    • /
    • 2007
  • For high-dimensional pattern recognition, such as face classification, the small number of training samples leads to the Small Sample Size problem when the number of pattern samples is smaller than the number of dimensionality. Recently, various LDA-extensions have been developed, including LDA, PCA+LDA, and Direct-LDA, to address the problem. This paper proposes a method of improving the classification efficiency by increasing the number of (sub)-classes through pre-clustering a training set prior to the execution of Direct-LDA. In LDA (or Direct-LDA), since the number of classes of the training set puts a limit to the dimensionality to be reduced, it is increased to the number of sub-classes that is obtained through clustering so that the classification performance of LDA-extensions can be improved. In other words, the eigen space of the training set consists of the range space and the null space, and the dimensionality of the range space increases as the number of classes increases. Therefore, when constructing the transformation matrix, through minimizing the null space, the loss of discriminatve information resulted from this space can be minimized. Experimental results for the artificial data of X-OR samples as well as the bench mark face databases of AT&T and Yale demonstrate that the classification efficiency of the proposed method could be improved.