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Abstract 

 
The job shop scheduling problem (JSSP) plays a critical role in smart manufacturing, an 
effective JSSP scheduler could save time cost and increase productivity. Conventional 
methods are very time-consumption and cannot deal with complicated JSSP instances as it 
uses one optimal algorithm to solve JSSP. This paper proposes an effective scheduler based 
on deep learning technology named self-supervised long-short term memory (SS-LSTM) to 
handle complex JSSP accurately. First, using the optimal method to generate sufficient training 
samples in small-scale JSSP. SS-LSTM is then applied to extract rich feature representations 
from generated training samples and decide the next action. In the proposed SS-LSTM, two 
channels are employed to reflect the full production statues. Specifically, the detailed-level 
channel records 18 detailed product information while the system-level channel reflects the 
type of whole system states identified by the k-means algorithm. Moreover, adopting a self-
supervised mechanism with LSTM autoencoder to keep high feature extraction capacity 
simultaneously ensuring the reliable feature representative ability. The authors implemented, 
trained, and compared the proposed method with the other leading learning-based methods on 
some complicated JSSP instances. The experimental results have confirmed the effectiveness 
and priority of the proposed method for solving complex JSSP instances in terms of make-
span.  
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1. Introduction 

The job shop scheduling problem (JSSP) plays a vital role in the process of building a smart 
factory regarding intelligent manufacturing [1][2], resource supplying [3][4], and cost-saving 
[5]. It is a continuous process-making problem, in which the scheduling arranges each job at 
each subphase sequentially for finding one optimal solution to minimize the make-span of the 
whole production. The solution space of one huge JSSP will increase exponentially. Especially 
for one 𝑚𝑚 × 𝑛𝑛 JSSP (where 𝑚𝑚 is the number of machines, and 𝑛𝑛 is the number of the jobs), 
the solution space is (𝑛𝑛!)𝑚𝑚 [6][7], which is known as NP-hard [8].  

Many methods have been proposed to solve this challenging task, which could be divided 
into three categories: population-based [5], gene-based [9], and learning-based methods. The 
population-based methods, including particle swarm optimization (PSO) [10], ant colony 
optimization (ACO), try to find the optimal solution for JSSP but are very time-consumption 
and resource-consumption, especially when meeting massive JSSP instances. To make a trade-
off between solution quality and computational cost, a near-optimal solution: gene-based 
methods are proposed and employed. E.g., Asadzadeh [10] improved the GA performance for 
JSSP by using an agent-based local search strategy. Kurdi et al. [11] proposed a new island 
model genetic algorithm (IMGA) to solve JSSP and verified their model on 52 JSSP instances. 
However, the current industry production environment is very complex and changing. 
Population-based, and gene-based methods require to repeat many iterations and update 
operations frequently, which takes a long time and is hardware-consumption.  

Luckily, with the continuous and booming development of artificial intelligence (AI) 
technology,  the learning-based method has been proposed and employed to solve complex 
JSSP and achieved great success [7][12]. The learning-based methods mainly treated a JSSP 
as one sub-classification problem, consisting of shallow learning and deep learning methods. 
The workflow of learning-based methods for solving JSSP, as shown in Fig. 1. Step 1 is to 
obtain the training samples by using other optimal solves such as GA and PSO; Step 3 is the 
key to ensure the accuracy of solving JSSP; Step 4, 5, and 6 are to solve one upcoming JSSP 
instance.  

Shallow learning-based methods for JSSP mainly include support vector machine (SVM) 
[13], random forest (RF) [14], and neural network (NN). Among them, NN has attracted 
various attention and been applied for JSSP in the last decades. E. g.,  Foo et al. [15] are the 
first to use NN for the JSSP. They treated the scheduling problem as one integer linear 
programming problem and utilized an improved Tank and Hopfield neural network model to 
solve JSSP. Gary et al. [6] used GA to generate the best solution and training samples, then 
they map those samples into operation, process time, remaining time, and machine load 
features as the input of NN to train the model. The comparative analysis proved the feasibility 
and scalability of the NN scheduler on more complex JSSP instances.  However, shallow NN 
only extract the hidden patterns by using two or three hidden layers, which lose some critical 
information to predict the next action.  

Deep learning [16] technology could extract more accurate and robust feature 
representations by increasing the hidden layers to achieve better performance. One of the most 
popular deep learning algorithm, convolutional neural network (CNN), has been applied to 
solve JSSP due it is capable of extracting most hidden representations from one-dimensional 
(1-D) sequence [17], two-dimensional (2-D) images [18], and three-dimensional video [19].  
E. g., Zhao et al. [20] integrated GA and CNN to solve one 7 × 7 JSSP instance, in which GA 
is used for the optimization of sequence while CNN is used for extracting the features from 
the operation start times with a 1-D  fixed sequence. Recently, Zang et al. [7] developed one 
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2-D CNN to extract the features from GA generated training samples, the results confirmed 
the effectiveness of the proposed hybrid deep neural network scheduler (HDDNS) with various 
JSSP instances, where they defined ten variables as the inputs of the NN. Moreover, a cartesian 
product was applied to transform the 1-D regular data into a 2-D tensor to extract the rich 
features. Although 2-D CNN has obtained excellent results, it requires transforming the 1-D 
data into a 2-D tensor, which is very time-consumption and hardware-consumption. Moreover, 
it ignores some critical features with time steps because JSSP is an ongoing process-making 
problem. Therefore, the accuracy is still not satisfactory. 
 

 
Fig. 1. The learning-based method for solving the JSSP. The black line trains the model while the blue 

line is to solve the new JSSP instance.  
 

Another branch of learning-based methods for solving JSSP is reinforcement learning (RL), 
which select the next action with the highest score according to the Q table, a tuple records the 
states and corresponding action. RL has achieved a big success in the area of JSSP in 
[21][22][23]. However, RL meets the same issue to the population-based and gene-based 
methods: Q table is too large with a sizeable JSSP instance, which results in a long time and 
requires a massive memory. To address this shortcoming, deep reinforcement learning (DRL) 
[24], also known as deep Q network (DQN), have been proposed and applied for JSSP. In 
which deep learning technology is to extract the rich feature representations to forecast the 
next actions' score according to the Q table generated from the RL algorithm, the machine will 
execute the following action according to the particular policy. E. g., Mao et al. [25] applied 
DRL with one deep NN (DNN) structure to manage the resource of CPU and memory.  Chen 
et al. [26] used DRL to process multi-resource and multi-job scheduling problems. They 
adopted CNN to extract feature representations of a dynamic production environment (CNN- 
DRL1). Moreover,  Ye et al. [27] proposed a more complex DRL framework based on CNN 
for resource scheduling (CNN-DRL2). Lin et al. [28] offered a multi-class DQN with edge 
computing devices for JSSP. Liu et al. [2]  proposed an actor-critic DRL framework for JSSP 



2996                                                                                          Shao et al.: Self-Supervised Long-Short Term Memory Network for  
Solving Complex Job Shop Scheduling Problem 

based on CNN. However, RL-based methods still need to update the Q table. They may fail to 
process the complex JSSP instance due to memory limitations in the real world.  

The limitations of current methods for JSSP are summarized as follows. Conventional 
methods such as population-based and gene-based methods are time-consumption and 
resource-consumption for large JSSP instance. The shallow learning methods such as SVM, 
RF, and shallow NN cannot extract sufficient features to reflect the production environments. 
The CNN-based methods did not consider the influence of time steps in the dynamic 
production environments, so that the performance is still not satisfactory. Besides, it requires 
some extra transformation. Similar to the population-based methods, the RL-based methods 
cannot process the complex JSSP.  

To overcome the limitations mentioned above, this paper developed a novel learning-based 
deep model named self-supervised LSTM [29] (SS-LSTM) for solving complex JSSP. In the 
proposed method, dual channels are employed to reflect the production environment altogether. 
Primarily, we defined 18 variables to reflect the detailed production states in the detail-level 
channel, and the K-means algorithm identifies the system-level state to reflect the system-level 
production states. LSTM extracted detail-level features are merged with the system-level 
feature for final classification. Furthermore, the self-supervised mechanism makes a trade-off 
between feature extraction and feature reconstruction. Consequently, the final features are the 
fusion of detail-level, system-level production states considering the influence of time steps, 
enabling the forecasting more accurately.    

The main contributions of this manuscript are summarized as: 
• To our best understanding, this paper is the first to use LSTM for complex JSSP within 

a self-supervised mechanism.  
• A new framework SS-LSTM has been proposed to handle complex JSSP instance 

accurately and efficiently. Various comparative analysis has confirmed its 
effectiveness. 

• Each component's effect has been analyzed through an ablation study. 
• The proposed method has good robustness for solving JSSP. 
The rest of the paper is arranged as follows. Section 2 introduces some pre-knowledge, 

including JSSP, LSTM. Section 3 gives a detailed description of the proposed SS-LSTM for 
JSSP. In Section 4, we utilized different JSSP data sets to validate the proposed method's 
effectiveness, and various comparative studies are carried out. We discussed the proposed 
method for JSSP in Section 5. Section 6 conducted this manuscript and feature work.  

2. Methodology 

2.1 JSSP 
The JSSP is to arrange multi-machines to process multi-jobs with satisfactory make-span and 
lowest cost. There are 𝑛𝑛 jobs 𝐽𝐽 = {𝐽𝐽1,  𝐽𝐽2, … ,  𝐽𝐽𝑛𝑛} arriving and to be processed by 𝑚𝑚 machines 
𝑀𝑀 = {𝑀𝑀1,  𝑀𝑀2, … ,  𝑀𝑀𝑚𝑚}. Each job 𝐽𝐽𝑖𝑖 consists of 𝑛𝑛 sub-operations, where 𝑂𝑂𝑖𝑖𝑖𝑖 denotes 𝑗𝑗𝑡𝑡ℎ sub-
operation of the job 𝐽𝐽𝑖𝑖. Any functional machines could process each sub-operation 𝑀𝑀𝑘𝑘 with 
processing time 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖, which means that 𝑗𝑗𝑡𝑡ℎ sub-operation of the job 𝐽𝐽𝑖𝑖 needs to be processed at 
the machine 𝑀𝑀𝑘𝑘 in time 𝑡𝑡. 𝑀𝑀𝑘𝑘 is the corresponding functional machine for sub-operation 𝑂𝑂𝑖𝑖𝑖𝑖, 
selected from the 𝑀𝑀  machines, that is, 𝑀𝑀𝑘𝑘 = 𝑀𝑀𝑖𝑖𝑖𝑖 ∈ 𝑀𝑀 . The whole process will end until 
arranging all sub-operations.  

An  8 × 6 JSSP instance (𝑛𝑛 = 8,𝑚𝑚 = 6) as illustrated in Fig. 2. The left is the job order 
𝑂𝑂𝑖𝑖𝑖𝑖 table, which records the requiring machine 𝑘𝑘 to process each sub-operation 𝑂𝑂𝑖𝑖𝑖𝑖. The right 
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is corresponding processing time 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 , in which 𝑗𝑗𝑡𝑡ℎ  sub-operation of the job 𝐽𝐽𝑖𝑖  needs to be 
processed by machine 𝑘𝑘 with the given time. For instance, the red colour content in Fig. 2 
represents sub-operation 𝑂𝑂11  needs to be processed by machine 6 with 15 units. The 
corresponding solution using GA, as shown in Fig. 3. The make-span is 222. Moreover, the 
example explained above under four constraints as defined follows: 

Constrain 1: Each sub-operation only needs to be processed once at one particular machine. 
Constrain 2: Each machine only can process one sub-operation at once. 
Constrain 3: Each job has one specific order to process 𝑛𝑛 suboperations.  
Constrain 4: The set-up times and transmission times are negligible.  

 

 
Fig. 2. An  8 × 6 JSSP instance (𝑛𝑛 = 8,𝑚𝑚 = 6). The left is the job order table, while the right is 

corresponding requiring processing time table. 
 

 
Fig. 3. The solution using GA for  8 × 6 JSSP instance (𝑛𝑛 = 8,𝑚𝑚 = 6) with Gantt Chart.  

 
The minimum make-span of a JSSP instance could be calculated by minimizing the 

maximum ending time 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 among all machines. Thus, our objective could be written as (1). 
 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚)                                                                                            (1) 

2.2 LSTM 
LSTM is a special kind of recurrent neural network (RNN) [30] developed to solve long-time 
dependency problems caused by conventional RNN through three gate-like components: input 
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gate 𝑖𝑖𝑡𝑡, forgot gate 𝑓𝑓𝑡𝑡, and output gate 𝑜𝑜𝑡𝑡, as shown in Fig. 4. It has been utilized for speech 
recognition [31], power forecasting [30], and mixed modulation recognition [32] due to its 
excellent memory function. Especially, forgot gate decides what information should be deleted 
from previous hidden output ℎ𝑡𝑡−1 by using (2). Where σ is the sigmoid function, 𝑤𝑤𝑓𝑓 is weight, 
 𝑥𝑥𝑡𝑡 is the input value at time 𝑡𝑡,  𝑏𝑏𝑓𝑓 is the bias vector. On the contrary, the input information 
depends on the input gate 𝑖𝑖𝑡𝑡, as described in (3). Same as above, the output gate 𝑜𝑜𝑡𝑡 decides 
which part could be output for the next step by using (4).   𝐶𝐶𝑡̅𝑡  will control the middle states of 
the LSTM cell according to the previous hidden output ℎ𝑡𝑡−1   and current input value 𝑥𝑥𝑡𝑡 
through (5). The final states 𝐶𝐶𝑡𝑡 of the LSTM cell is controlled by the blue belt, which integrates 
the new and useful information and deletes some old and noise meaningless information, as 
described in (6). Where ∗ is element-wise operation. Moreover, the hidden output could obtain 
from (7) for the next LSTM cell. In the real application, one LSTM layer consists of several 
LSTM cells connected in a chain-like mode. Using those LSTM layers, we could extract rich 
hidden features with long-time dependency for forecasting. It is very suitable for JSSP because 
it is an ongoing problem and is influenced by the time steps.   
 

𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑤𝑤𝑓𝑓ℎ𝑡𝑡−1 + 𝑤𝑤𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑓𝑓�                                                                          (2) 
 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑤𝑤𝑖𝑖ℎ𝑡𝑡−1 + 𝑤𝑤𝑖𝑖𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑖𝑖)                                                                            (3) 
 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑤𝑤𝑜𝑜ℎ𝑡𝑡−1 + 𝑤𝑤𝑜𝑜𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑜𝑜)                                                                          (4) 
 

𝐶𝐶𝑡̅𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑤𝑤𝑐𝑐ℎ𝑡𝑡−1 + 𝑤𝑤𝑐𝑐𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑐𝑐)                                                                   (5) 
 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝐶𝐶𝑡̅𝑡                                                                                      (6) 
 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝐶𝐶𝑡𝑡)                                                                                            (7) 
 

 
Fig. 4. The structure of LSTM, including three gates: input gate 𝑖𝑖𝑡𝑡, output gate 𝑜𝑜𝑡𝑡, and forgot gate 𝑓𝑓𝑡𝑡. 

The control belt marked with blue colour controls the whole information flow.  
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3. The Proposed SS-LSTM for JSSP  
The proposed SS-LSTM has dual channels: detailed-level and system-level channels, as shown 
in Fig. 5. The detailed-level channel records 18 detailed production states, while the system-
level channel is for system-level states. Furthermore, it consists of five steps: constructing the 
input sates, detailed-level feature extraction, system-level feature construction, feature fusion 
and self-supervised learning, output the targe and update the network, respectively. A detailed 
description of each part is introduced in the following section.  
 

 

 
 

Fig. 5. The proposed SS-LSTM structure for solving JSSP. 
 

3.1 Constructing the Input States 
As introduced in Fig. 1, the first step for JSSP is using deep learning technology to generate 
solutions with some optimal solutions. In the proposed framework, we utilized GA to generate 
the solutions and corresponding training samples, including input features and labels 
(corresponding to Step 2 in Fig. 1). The proposed SS-LSTM defined 18 productions states to 
fully reflect the detail-level states when generate the solution using GA, as shown in Table 1. 
The corresponding label is generated by using algorithm 1, which selects the machine's priority 
as the label. By using algorithm 1, one 𝐽𝐽 × 𝑀𝑀 JSSP instance would be converted into an M-
classification problem. 

Furthermore, the input is formalized as (8) for continues analysis. Notice, one sample from 
matrix 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 corresponds to one label. 
 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = [𝐽𝐽𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎
𝐽𝐽

, 𝑘𝑘
𝑛𝑛

, … ,𝑂𝑂𝑖𝑖,𝑗𝑗]                                                                                        (8) 
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Table 1. Construting18 detailed-level states 

Order Description 
1 The ratio of phase order 

𝐽𝐽𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎
𝐽𝐽

, where J is the number of jobs. 
2 Position order 𝑘𝑘

𝑛𝑛
. 

3 Order of procedure in machine m. 
4 The ratio of the procedure to all machine 𝑀𝑀: 𝑚𝑚

𝑀𝑀
. 

5 The ratio of processing time to sum:  𝑇𝑇𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇)

. 
6 The ratio of processing time to the maximum: 𝑇𝑇𝑖𝑖𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚(𝑇𝑇)
. 

7 The ratio of processing time to minimum: 𝑇𝑇𝑖𝑖𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚(𝑇𝑇)

. 
8 The ratio of processing time to mean: 𝑇𝑇𝑖𝑖𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑇𝑇)
. 

9 The ratio of processed 𝐽𝐽𝑖𝑖’s processing time 𝑇𝑇𝑖𝑖,:𝐽𝐽 to the total processing time of job Ti: 
Ti,:J
Ti

. 

10 The ratio of processing time 𝑇𝑇𝑖𝑖𝑖𝑖  to processed  𝐽𝐽𝑖𝑖’s processing time  𝑇𝑇𝑖𝑖,:𝐽𝐽: 
𝑇𝑇𝑖𝑖,𝑗𝑗
𝑇𝑇𝑖𝑖,:𝐽𝐽

. 

11 The ratio of processing time  𝑇𝑇𝑖𝑖𝑖𝑖  to total 𝐽𝐽𝑖𝑖’s processing time 𝑇𝑇𝑖𝑖: 
𝑇𝑇𝑖𝑖,𝑗𝑗
𝑇𝑇𝑖𝑖

. 

12 The ratio of processing time 𝑇𝑇𝑖𝑖𝑖𝑖  to unfinished  𝐽𝐽𝑖𝑖’s processing time  𝑇𝑇𝑖𝑖,𝑗𝑗:: 
𝑇𝑇𝑖𝑖,𝑗𝑗
𝑇𝑇𝑖𝑖,𝑗𝑗:

. 

13 The ratio of job index 𝑗𝑗 to job number 𝐽𝐽: 𝑗𝑗
𝐽𝐽
. 

14 The ratio of machine m to machine number 𝑀𝑀: 𝑚𝑚
𝑀𝑀

. 
15 The processing time 𝑇𝑇𝑖𝑖𝑖𝑖  to machine m’s processing time 𝑇𝑇:,𝑚𝑚: 

𝑇𝑇𝑖𝑖,𝑗𝑗
𝑇𝑇:,𝑚𝑚

. 

16 The ratio of 𝐽𝐽𝑖𝑖’s processing time 𝑇𝑇𝑖𝑖,: to machine m’s processing time 𝑇𝑇:,𝑚𝑚: 𝑇𝑇𝑖𝑖,:
𝑇𝑇:,𝑚𝑚

. 

17 Processing time 𝑇𝑇𝑖𝑖,𝑗𝑗 . 
18 Processing order 𝑂𝑂𝑖𝑖,𝑗𝑗. 

 
Algorithm 1: Labels generation algorithm 
Input: Optimal solution matrix 𝑋𝑋, which records J× 𝑀𝑀 elements of �𝐽𝐽𝐽𝐽𝑏𝑏𝑖𝑖𝑖𝑖 , 𝐽𝐽𝐽𝐽𝑏𝑏𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎�, where 𝐽𝐽𝐽𝐽𝑏𝑏𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎  
is the job order. 
Output: Sub-classification labels label. 
1:   for i= 1, 2, 3, …, M do: 
2:           for j=1, 2, 3, …, J do: 
3:                  if 𝐽𝐽𝐽𝐽𝑏𝑏𝑖𝑖𝑖𝑖 == 𝑋𝑋[𝑖𝑖, 𝑗𝑗, 0] and 𝐽𝐽𝐽𝐽𝑏𝑏𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 == 𝑋𝑋[𝑖𝑖, 𝑗𝑗, 1] 
4:                         l𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑗𝑗) 
5:     return l𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

3.2 Detailed-level Feature Extraction 
To extract the more abstract and robust hidden patterns for the next action prediction, the 
proposed SS-LSTM applies two stacked LSTM layer to extract rich feature representations 
considering the impact on time step in the detailed-level channel, as shown in (9). Where 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿() is LSTM operation. The reason for using two LSTM layers is to make a trade-off 
between feature extraction and saving time due to LSTM operation is time-consumption.  
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼))                                                                     (9) 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 8, August 2021                                 3001 

3.3 System-level Feature Construction 
The previous step has extracted rich detailed-level features. The proposed method adopts the 
Kmeans algorithm to identify the system-level feature representations to enhance the feature 
representative capability again, as defined in (10). Where the input samples will be divided 
into several classes to reflect the system-level production states, 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾( ) is the k-means 
algorithm.  
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑠𝑠(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)                                                                    (10) 

3.4 Feature Fusion and Self-supervised Learning  
To get the fusion features of detailed-level features and system-level features, this manuscript 
adopts one concatenate layer to combine them, as described in (11). Therefore, the features 
include the detailed-level and system-level states hidden patterns considering the influence of 
time steps.   
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)                            (11) 
 

Meanwhile, the proposed method adopts self-supervised LSTM to keep high feature 
extraction capacity simultaneously ensuring the reliable feature representative ability. Two 
symmetrical LSTM layers are utilized to reconstruct the input states, which is formalized as: 
 

 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑))                                                      (12)   

3.5 Output and Updating 
The proposed SS-LSTM has two outputs: reconstructed input states as described in (12) and 
target machine priority as follows: 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)                                                                               (13) 
 

Where one dense layer with 𝑀𝑀 nodes is employed to predict machine priority, the highest will 
be selected as the predicting label. 

Corresponding to the two outputs we defined in the SS-LSTM, the proposed method 
calculates two loss functions to update the parameters of hidden layers in the SS-LSTM. One 
is the mean square error (MSE) for reconstructing input states. Another one is categorical 
cross-entropy (CCE) for outputting target. The proposed method employs 𝛼𝛼, 𝛽𝛽 to combine 
them as follows: 
 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽                                                                                        (14) 
 
Where 𝛼𝛼 + 𝛽𝛽 = 1 . By minimizing the loss, the hidden layers of SS-LSTM are updated. 
Moreover, the influence of 𝛼𝛼, 𝛽𝛽, will be discussed in the next section. After obtaining the 
subclassification results, the converting algorithm will be utilized to convert the classification 
problem to the JSSP problem, which is similar to the reference [7].  

Moreover, solving the JSSP using the proposed SS-LSTM could be written as (15). The 
new JSSP instance is converted into detailed-level states 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼′ , and system-level states  
𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼′); 𝑆𝑆𝑆𝑆 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿() are the trained model parameters; The target 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
will be converted into JSSP by using converting algorithm.  
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𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑆𝑆𝑆𝑆 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼′,𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼′))                                     (15) 

4 Experimental Verification 
To validate the effectiveness of the proposed method for complex JSSP. We implement the 
proposed SS-LSTM based on the operating system of ubuntu 16.04.3 with 23GB memory at a 
speed rate of 3.6 GHz, TensorFlow backend Keras for several complex JSSP instances.  

4.1 Modeling  
This section gives one detailed explanation about how to use the proposed SS-LSTM to 
process the JSSP instance from scratch, including the configuration, data generation, training 
the model, and system-level states identification.    

4.1.1 Configuration 
This manuscript adopted LSTM to solve JSSP, which has some hyperparameters that need to 
be defined, including input nodes, hidden nodes, activation function, loss function, and 
optimizer. For the loss function, we have defined MSE for target output and CCE for input 
reconstructing output, as defined in (14). For others, we adopted "Adam" as the optimizer to 
find the best convergence path. Rectified linear unit (ReLu) is selected as the activation 
function except for two output layers are "linear" and "softmax." The detailed configurations 
using an example of ten machines, as shown in Fig. 6. The left input layer corresponds to the 
detailed-level channel, while the right one is the system-level channel. Moreover, the LSTM 
layers' nodes are 64 and 128, used to extract the hidden patterns from the detailed-level channel 
for next-action prediction. The "RepeatVector” layer is used to reconstruct the detailed-level 
states, and the “Concatenate” layer is for fusing the detailed-level and system-level features, 
respectively. Moreover, the nodes number of the target output (right Dense layer) is set as ten 
as having ten machines.  

4.1.2 Data Generation 
The authors randomly generate 246 10 × 10 JSSP instances whose processing time ranges 
from 10 to 100.  We utilize GA to solve those instances and calculate its detailed-level input 
states as defined in Table 1. Moreover, algorithm 1 is applied to create corresponding labels.  
At last, it obtained 24600 samples. For other kinds of JSSP instances, by simply changing the 
job numbers 𝑛𝑛 and machine numbers 𝑚𝑚.  

4.1.3 Training the Model 
This paper adopted an early stop strategy to train the model. Specifically, splitting the 
generated samples into two parts: 80% training samples are used to train the model; The rest 
20% validation samples is for finding the best model within given 150 epochs using the early 
stop strategy with patience 20. If the loss does not decrease for twenty steps in a row, the 
training process will be the end, and the epoch with the lowest loss will be saved as the trained 
model; Else will not stop until up to the 150 epochs. Shao et al. [33] also adopted this method 
to find the best model for power forecasting. 
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4.1.4 System-level states identification 
The proposed method adopts the K-means algorithm to identify system-level production states. 
This manuscript specifies cluster numbers to be 1-30. Fig. 7 shows the values of the within-
cluster sum of errors (WCSS) [30] on the training set. It is clear to select 13 as cluster numbers 
due to changing in WCSS begins to level off at cluster 13. 
 

 
 

Fig. 6. The detailed configuration of the proposed SS-LSTM for ten machines JSSP instance. 

4.2 The influence of 𝜶𝜶,𝜷𝜷 
After getting the two-channel inputs, the authors train the model with different 𝛼𝛼, 𝛽𝛽 on one 
famous JSSP data set-ft10 [34], a 10 × 10 JSSP instance to find the best trade-off between 
them. The results indicate that 𝛼𝛼 0.4 and 𝛽𝛽 0.6 performs best with the make-span of 1613, 
which could be found in Table 2. Moreover, the smaller 𝛼𝛼 is better, as conducted from Fig. 8. 
The sequential analysis is based on 𝛼𝛼 0.4 and 𝛽𝛽 0.6 as they perform the best. 
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Fig. 7. The WCSS values of different clusters. 
 

Table 2. The results on ft10 using different 𝛼𝛼, 𝛽𝛽 
𝜶𝜶 (MSE) 𝜷𝜷 (CCE) Make-span 

0.1 0.9 1853 
0.2 0.8 1788 
0.3 0.7 1816 
0.4 0.6 1613 
0.5 0.5 2037 
0.6 0.4 1832 
0.7 0.3 1932 
0.8 0.2 1901 
0.9 0.1 1896 

 

 
Fig. 8. The influence of different 𝛼𝛼 on ft10. 
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4.3 Comparative Analysis 
To validate the effectiveness of the proposed SS-LSTM for JSSP. The authors compared it 
with some leading methods, including the deep learning-based method hybrid deep neural 
network (HDNN) proposed by Zang et al. [7], in which they already proved that HDNN 
outperforms others such as shallow NN, SVM, and RF. Therefore, this manuscript only 
compared the proposed SS-LSTM with HDNN. Moreover, we compared the proposed SS-
LSTM with some DRL-based methods, including classical DRL [25], CNN-DRL1 [26], more 
complex CNN-DRL2 [27]. All the above comparative are carried out based on two JSSP 
instances, including ft10 and ft20 [34], and each DRL-based method run 20,000 epochs to find 
the best solution. We adopted the original code of HDNN from the website 
github.com/zangzelin/HDNNMv2.0. Moreover, we adopted their deep learning part for the 
DRL-based methods as the structure, and reinforcement parts are the same. The deep learning 
part of each DRL-based method, as described in Table 3. Where the term "Conv1D", 
"Maxpool1D" represent 1-D convolutional and max-pooling operations, 𝑛𝑛 is the job number. 
The results using make-span, as shown in Table 4. The findings indicated that only the 
proposed method and HDNN could find the solution for both two JSSP instances. However, 
DNN-DRL cannot find the solutions; CNN-DRL1 and CNN-DRL2 only find the solution for 
ft10. Those evidence has proven that the deep learning-based method is more effective than 
the DRL-based method for complex JSSP instance when we consider the limitations of the 
hardware.  

  We further compare the proposed SS-LSTM with HDNN on different complicated JSSP 
instances, including la24 and la36  [35]. The findings indicate that the proposed method wins 
three times over four JSSP instances, except for HDNN [7] performs a little better on la36, as 
shown in Fig. 9. Moreover, the proposed method does not require two-dimensional 
transformation, while HDNN needs. Thereby it saves lots of computing resources. The 
comparative analysis has confirmed that the proposed SS-LSTM could effectively solve 
complex JSSP; and it has good robustness for different complex JSSP.  
 

Table 3. The configuration information of each comparative method 
Method A detailed description of each method 

HDNN Adopted author’s code to run, which could be found from 
github.com/zangzelin/HDNNMv2.0. 

DNN-RL Input: system-level channel; The structure of deep learning part: Input-Dense(10)-
Dense(20)-Dense(30)-Output(𝑛𝑛) 

CNN-
DRL1 

Input: system-level channel; The structure of deep learning part: Input-Conv1D(16, 
(2))-Output(n) 

CNN-
DRL2 

Input: system-level channel; The structure of deep learning part: Input- Conv1D 
(16,(2))-Maxpool1D(2)-Dense(100)-Output(n) 

 
Table 4. The make-span of each comparative method on ft10, ft20 (“-” means no solution) 

Instance HDNN DNN-
RL 

CNN-DRL1 CNN-DRL2 Proposed 

ft10 (10 × 10) 1768 - 1985 1860 1613 
ft20 (20 × 5) 2015 - - - 2198 

 



3006                                                                                          Shao et al.: Self-Supervised Long-Short Term Memory Network for  
Solving Complex Job Shop Scheduling Problem 

 
Fig. 9. The comparison results for complex JSSP. 

4.4 Ablation Study  
To explore each component's influence on the proposed SS-LSTM for solving complex JSSP, 
the authors designed three experiments. Especially designed LSTM alone to validate the 
system-level channel's effectiveness. Designed SS-LSTM without a self-supervised 
mechanism to validate its impact. All configurations are the same as SS-LSTM. The results 
are tested on the ft10 instance, as shown in Table 5. Comparing LSTM alone with SS-LSTM 
without a self-supervised mechanism, the system-level channel has reduced the make-span of 
8.38%. Therefore, it confirmed the effectiveness of the system-level channel in the proposed 
method. Moreover, the supervised mechanism application has improved 11.18% performance 
by comparing it with the proposed SS-LSTM. The findings have confirmed the effectiveness 
of each part in the proposed SS-LSTM.  
 

Table 5. The ablation analysis of the proposed method on ft10 instance 
Method Make-span 

LSTM alone 1982 
SS-LSTM without the self-supervised mechanism 1816 

SS-LSTM 1613 

5. Discussion  
The JSSP is a very challenging problem with the continues development of the industry. 
Massive devices increasing the difficulty since it may cause an NP-hard problem. One example 
is used to explain what is JSSP, as shown in Fig. 2 and Fig. 3. This paper proposed a novel 
and useful method named self-supervised LSTM for solving complex JSSP, as shown in Fig. 
5. It treated JSSP as a multiple subclassification problem, the whole workflow, including six 
steps, as described in Fig. 1. The critical step is to build one powerful deep model to accurately 
extract rich hidden patterns to predict the next action. Moreover, JSSP is one ongoing problem. 
Therefore, the proposed method applied dual channels based on LSTM to fully extract hidden 
patterns of production states due to LSTM could address the long-time dependency problem. 
Significantly, the detailed-level channel is for extracting detailed production states features, 
while the system-level channel is for system-level feature extraction. Furthermore, to make a 
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trade-off between classification and feature extraction, the self-supervised mechanism is 
employed.  

The comparative analysis has confirmed the proposed SS-LSTM’s effectiveness for 
solving complex JSSP, which could be conducted from Table 4 and Fig. 9. Moreover, Table 
4 has proven that the deep learning-based methods are more effective than the DRL-based 
methods for complex JSSP instance when considering the hardware limitations.  

To build the model, the authors defined 18 variables to reflect the detail-level states, as 
shown in Table 1. Also, the model adopted the K-means algorithm to identify the system-level 
states, WCSS is adopted to select the appropriate system-level states, as shown in Fig. 7. 

To explore the influence of 𝛼𝛼, 𝛽𝛽, we trained the model on the ft10 JSSP instance. The 
results indicate that 𝛼𝛼 0.4 and 𝛽𝛽 0.6 performs best, which could be found in Table 2. Moreover, 
the smaller 𝛼𝛼 is better, as conducted from Fig. 8.  

To explore the inner working mechanism of the proposed SS-LSTM for JSSP. We did an 
ablation study with three experiments on the ft10 JSSP instance. Significantly, the system-
level channel reduced the make-span by 8.38%, and the supervised mechanism improved the 
performance by 11.18%, respectively. They could be conducted in Table 5.  In summary, the 
proposed SS-LSTM could effectively and accurately solve complex JSSP.  

However, same to other deep learning models, the proposed SS-LSTM for JSSP needs to 
set the hyperparameters based on our experience, which limits the accuracy’s improvement. 
Moreover, the proposed method’s accuracy depends on the optimal solution, the accuracy still 
can be improved by using appreciate optimal method. 

6. Conclusion  
This manuscript has proposed a novel deep learning-based framework named SS-LSTM for 
solving complex JSSP. The comparative analysis has confirmed its effectiveness and 
robustness. In the proposed SS-LSTM, dual channels are utilized to extract rich hidden 
patterns from detail-level and system-level channels to reflect production environments fully. 
The detail-level channel defined 18 variables to stand by the detail-level states, while the K-
means algorithm identifies system-level states. Moreover, adopting a self-supervised 
mechanism with LSTM autoencoder to keep high feature extraction capacity simultaneously 
ensuring the reliable feature representative ability. The ablation study has confirmed each 
component’s effectiveness in the proposed method for complex JSSP. Significantly, the 
system-level channel reduced the make-span by 8.38%, and the supervised mechanism 
improved the performance by 11.18%, respectively. By combining those technologies 
properly, the proposed SS-LSTM could accurately process complex JSSP. 

As discussed in the discussion part, using proper hyperparameters could improve SS-
LSTM's performance. In the future, we will utilize DRL technology to find the best 
hyperparameters for solving complex JSSP under the proposed framework. Moreover, we will 
validate its generality on other kinds of time-series data sets. 
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