• Title/Summary/Keyword: Train-Wind

Search Result 249, Processing Time 0.025 seconds

The Effect of Wind-instrument Centered Music Therapy on Respiration, Oral Motor and Articulation for Patients with Cervical Cord Injury - Case Study - (취주악기를 사용한 음악치료가 경수손상환자의 호흡, 구강운동 및 조음에 미치는 영향 -사례연구-)

  • Kim, Tai youn;Park, Shin ae;Lee, Yong seok
    • 재활복지
    • /
    • v.21 no.1
    • /
    • pp.233-252
    • /
    • 2017
  • The purpose of this study is to investigate the influence on respiration, oral motor and articulation using wind-instrument centered music therapy for patients with cervical cord injury who need continuous train of respiratory muscle. Three patients with cervical cord injury who needed continuous training of respiratory muscle were selected and post data was analyzed. The harmonica using both exhalation and inspiration was selected as an wind-instrument. Each session was taken 30 ~ 40 minutes, once a week from total 6 weeks with small group. Material about every session's work was provided for individual to maintain practice after program. Oral motor and articulation test was done to assess reflecting features of maximal expiratory flow and wind-instrument of factor related breath. Maximal expiratory flow has increased by average 25ml more, articulation has increased by 3.16 points more and the movement of oral motor has increased 11.67 points more than pre-test from the analyzation. In the comparison of the details, the increase of oral motor function was confirmed from scores on the jaw and tongue except for the lips. Based on the results of this study, this study suggests that wind-instrument centered music therapy will be a practical and effective intervention for respiratory rehabilitation in patients with cervical cord injury.

A Study on Prediction Method of Derailment Behaviors due to Cross-wind Considering Dynamic Effects of Wheel-rail Interaction (차륜-레일의 동적효과를 고려한 측풍 원인 탈선 예측방법 연구)

  • Kim, Myung Su;Koo, Jeong Seo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.699-709
    • /
    • 2014
  • This paper proposes a new method for predicting the derailment of a running train under cross-wind conditions, using the single wheelset derailment theory. The conventional theories used for predicting the derailment due to cross-winds were developed under the assumption that derailment will always be of the roll-over type, thus neglecting other possible types such as wheel-climbing, which may occur under special driving conditions. In addition, these theories do not consider running conditions such as dynamic wheel-rail interactions and friction effects. The new method considers the effects of dynamic wheel-rail interaction as well as those of lateral acceleration, rail cant, and cross-winds. The results of this method were compared and verified with those of the conventional methods and numerical simulations.

A Study on the Device Installed on the Barrier for The Environmental Noise Reduction in 400 km/h High Speed Railway (400 km/h 고속철도 환경소음저감을 위한 선로 변 벽체 상단장치개발에 관한 연구)

  • Jang, Kang Seok;Kim, Young Chan;Seo, Hyo Sun;Choi, Chan Young;Park, Jun Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.12
    • /
    • pp.679-684
    • /
    • 2017
  • Recently, the speed of high-speed railway has been rapidly increase with the development of high-speed train design and operating technology. This causes a lot of complaints related the environmental noise in residential areas near the high-speed railway. In order to operate the high-speed railway in accordance with the design speed, noise reduction technology should be developed to meet the noise characteristics of high-speed railway. And it is important to develop the prediction technology by grasping the noise radiation characteristics. In order to meet these requirements, in recent years, infra-research for 400 km/h high speed railway has been conducted. Reliable noise prediction and noise reduction techniques have been developed through this study. This paper is concerned with wind pressure safety and noise performance evaluation of the newly developed 400 km/h noise reduction device. The wind pressure safety and The noise performance of the developed device was confirmed by this paper.

A Study on the Fatigue Strength Analysis of Hub in a Wind Turbine (풍력터빈 허브의 피로 강도 해석에 대한 연구)

  • Koh, Jang-Wook;Kim, Hyang-Ki;Ahn, Kyoung-Min;Choi, Won-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.265-268
    • /
    • 2006
  • Performed fatigue strength analysis for Hub to get the targeted service life of 20 years. ANSYS is used to analysis. The major structure of bearing which connect the hub and blades is modeled using the element of LINK10. To represent the stiffness of LINK10 element, initial strain and diameter of LINK10 element is applied. Prior to calculating the fatigue damages, the influence matrix is extracted from the unit loads. The target service life of 20 years is achieved from the Analysis results.

  • PDF

Airport Noise Reduction based on Track Keeping (항로제한을 통한 공항주변 소음피해 영향검토)

  • Min, Ji-Hoon;Kim, Jung-Tae;Son, Jung-Gon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.65-70
    • /
    • 2000
  • Flying an aircraft is not like driving a train along a railway track. There are many factors that may affect an aircraft's course, including the wind speed and direction relative to the aircraft's intended flight path. This paper investigates noise exposed area by using INM. Especially, effect on aircraft route to minimise the number of people overflown by departing aircraft is evaluate. The result shows that track keeping scheme is effective to reduce the noise area. On the other track at 4000ft is negligible to the noise contour.

  • PDF

Spectral estimation of the pass-by noise of an acoustic source (등속 이동 음원의 통과소음 스펙트럼 추정에 관한 연구)

  • 임병덕;김덕기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.539-544
    • /
    • 1997
  • Although the identification of a moving noise source is important in reducing the source power of the transport systems such as airplane or high speed train, the direct measurement of the frequency characteristics is usually difficult due to wind noise when using a microphone running with that noise source. On the other hand the motion of a source causes the frequency characteristics of the pass-by sound measured at a fixed point to be distorted that it is quite difficult to identify the original source characteristics. In this study the relationship between the spectra of the source and the pass-by sound signal is analyzed for a source moving at a constant velocity. The effects of the speed and the frequency characteristics of the source on the pass-by noise spectrum are investigated through numerical simulations.

  • PDF

Numerical Analysis on Heat Transfer and Fluid flow of Brake Shoe for Freight Car (화물열차용 제륜자의 열유동 해석)

  • 남성원
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.123-128
    • /
    • 2001
  • Numerical simulation is conducted to clarify the heat transfer and fluid flow characteristics of brake shoe for freight car. High order up-wind scheme for governing equations, k-epsilon turbulent model and SIMPLEC algorithm based on finite volume method are used to solve the physical shoe model. The governing equations are solved by TDMA(Tri-Diagonal Matrix Algorithm) with line-by-line method and block correction. From the results of simulation, the characteristics of cooling pattern is strongly affected by the velocity of train and the material of shoe. The face lift of shoe affects on the temperature distribution of rear surface of shoe as well as the front surface of that. Due to the grooves in shoe, it will be expected to cool the frictional heat and result in the reduction of maintenance efforts.

  • PDF

Development of Optimum Design Technology of Platform Screen Door Systems for the Environment Improvement and Disaster Prevention of Urban Railway (도시철도 환경개선 및 방재를 위한 스크린도어시스템 최적설계기술 개발)

  • Kim, Jung-Yup
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.84-87
    • /
    • 2008
  • In order to maximize the effect of installing screen door system while to minimize the problems in an initial stage of introduction, it is strongly required to research an optimum installation solution in connection with ventilation and disaster prevention system alongside with safety structure analysis of screen door in respect to train-induced wind, as well as to develop the criteria for the operation after the installation. This paper presents the results of study to develop the optimum design technology in urban railway equipped with platform screen door systems.

  • PDF

Investigation of amount of the Air Flow through a Natural Ventilator in the Subway System (지하철 자연환기구 공기 이동량 조사)

  • Bae, Sung-Joon;Hwang, Sun-Ho;Shin, Chang-Hun;Kim, Shin-Do;Lee, Kyoung-Bin;Park, Duck-Shin
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1480-1486
    • /
    • 2011
  • After installation of platform screen door (PSD) in subway stations, particulate matters (PMs), which are originally ventilated through the platform, are accumulated inside the tunnel of the subway system. It deteriorates an air quality inside the tunnel. To ventilate the accumulated PMs inside the tunnel, the natural ventilator which are located inside the tunnel (namely, tunnel ventilation system) are used as only one circulation system. In addition, the installation of PSD can affect to the aerodynamic variations inside the tunnel, since the PSD system was not considered factor when the tunnel ventilation system was designed. However, the researches about the tunnel ventilation system have not been adequate. Therefore, this study is carried out with two objectives: 1) to measure the velocity of air current by the train-induced wind, when the train passes through the tunnel, and 2) to investigate the typical patterns of air current by quantitatively evaluating the characteristics of inflow/outflow of air current which passes through the natural ventilation system. This study can suggest the basic standard to newly design the tunnel of the subway system as well as the ventilation system.

  • PDF

Development of the Method Estimating Sections Occurring Intensive PM10 in a Subway Tunnel (For the South Section (Cheongdam~Jangseungbaegi) of Subway Line 7 in Seoul) (지하철 터널의 미세먼지 집중 발생구간 추정방법 개발 (서울 지하철 7호선 남단구간 (청담역~장승배기역) 을 대상으로))

  • Park, Jong-Heon;Park, Jae-Cheol;Eum, Seong-Jik
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.6
    • /
    • pp.121-131
    • /
    • 2010
  • To effectively reduce PM10 generated in concourses and platforms of subway stations, a research is being conducted to find the PM10 source. The main source of PM10 in subway stations was PM10 generated in the main line tunnels, which was generated in proportion to the frequency of the train operation. Each amount of the PM10 generated when the train was operated once, was constant regardless of the time. On the assumption that the PM10 level in a tunnel of a line is a sum of newly generated amount of dust when the subway passes and the amount carried from the adjacent stations by the wind generated from the subway rolling stocks, the method which estimates the intensive PM10 occurring section was developed and applied to the 12 stations between Cheongdam and Jangseungbaegi in Seoul Subway Line 7.