• Title/Summary/Keyword: Traffic Volume Level

Search Result 195, Processing Time 0.029 seconds

Network Traffic Monitoring System Applied Load Shedder to Analyze Traffic at the Application Layer (애플리케이션 계층에서 트래픽 분석을 위해 부하 차단기를 적용한 네트워크 트래픽 모니터링 시스템)

  • Son Sei-Il;Kim Heung-Jun;Lee Jin-Young
    • Journal of Internet Computing and Services
    • /
    • v.7 no.3
    • /
    • pp.53-60
    • /
    • 2006
  • As it has been continuously increased the volume of traffic over Internet, it is hard for a network traffic monitoring system to analysis every packet in a real-time manner. While it is increased usage of applications which are dynamically allocated port number such as peer-to-peer(P2P), steaming media, messengers, users want to analyze traffic data generated from them. This high level analysis of each packet needs more processing time. This paper proposes to introduce load shedder for limiting the number of packets. After it determines what application generates a selected packet, the packet is analyzed with a defined application protocol.

  • PDF

The Study for Estimating Traffic Volumes on Urban Roads Using Spatial Statistic and Navigation Data (공간통계기법과 내비게이션 자료를 활용한 도시부 도로 교통량 추정연구)

  • HONG, Dahee;KIM, Jinho;JANG, Doogik;LEE, Taewoo
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.3
    • /
    • pp.220-233
    • /
    • 2017
  • Traffic volumes are fundamental data widely used in various traffic analysis, such as origin-and-destination establishment, total traveled kilometer distance calculation, congestion evaluation, and so on. The low number of links collecting the traffic-volume data in a large urban highway network has weakened the quality of the analyses in practice. This study proposes a method to estimate the traffic volume data on a highway link where no collection device is available by introducing a spatial statistic technique with (1) the traffic-volume data from TOPIS, and National Transport Information Center in the Ministry of Land, Infrastructure, and (2) the navigation data from private navigation. Two different component models were prepared for the interrupted and the uninterrupted flows respectively, due to their different traffic-flow characteristics: the piecewise constant function and the regression kriging. The comparison of the traffic volumes estimated by the proposed method against the ones counted in the field showed that the level of error includes 6.26% in MAPE and 5,410 in RMSE, and thus the prediction error is 20.3% in MAPE.

Development of Hazard-Level Forecasting Model using Combined Method of Genetic Algorithm and Artificial Neural Network at Signalized Intersections (유전자 알고리즘과 신경망 이론의 결합에 의한 신호교차로 위험도 예측모형 개발에 관한 연구)

  • Kim, Joong-Hyo;Shin, Jae-Man;Park, Je-Jin;Ha, Tae-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4D
    • /
    • pp.351-360
    • /
    • 2010
  • In 2010, the number of registered vehicles reached almost at 17.48 millions in Korea. This dramatic increase of vehicles influenced to increase the number of traffic accidents which is one of the serious social problems and also to soar the personal and economic losses in Korea. Through this research, an enhanced intersection hazard prediction model by combining Genetic Algorithm and Artificial Neural Network will be developed in order to obtain the important data for developing the countermeasures of traffic accidents and eventually to reduce the traffic accidents in Korea. Firstly, this research has investigated the influencing factors of road geometric features on the traffic volume of each approaching for the intersections where traffic accidents and congestions frequently take place and, a linear regression model of traffic accidents and traffic conflicts were developed by examining the relationship between traffic accidents and traffic conflicts through the statistical significance tests. Secondly, this research also developed an intersection hazard prediction model by combining Genetic Algorithm and Artificial Neural Network through applying the intersection traffic volume, the road geometric features and the specific variables of traffic conflicts. Lastly, this research found out that the developed model is better than the existed forecasting models in terms of the reliability and accuracy by comparing the actual number of traffic accidents and the predicted number of accidents from the developed model. In conclusion, it is expect that the cost/effectiveness of any traffic safety improvement projects can be maximized if this developed intersection hazard prediction model by combining Genetic Algorithm and Artificial Neural Network use practically at field in the future.

한국의 지역간 철도 설계시간교통량 산정 방안 연구

  • Seo, Yong-Jun;Suh, Sun-Duck;Kim,, Han-Young;Suh, Sang-Kyo
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1913-1926
    • /
    • 2007
  • Number of highway lanes and level of service are based on the 30th, 60th or 100th highest hour volume of the target year. On the other hand, railroad design volume is generally expressed in average annual daily traffic (AADT). This procedure ignores attributes of railroad demand's concentration on peak days and hours. Actual data analysis represents railroad's peaking characteristics very similar to those of highways. Therefore it is necessary to set a procedure in selecting design volume for railroad planning. This study presents a concept and the calculating procedure for railroad design hourly volume to analyze effect of railroad investment.

  • PDF

The Improvement Method for Air Pollution Level through Optimal Allocation of Urban Facilities( I ) (도시시설의 도로기능별 적정입지분석을 통한 대기오염 저감방안에 관한 연구( I ))

  • Kwon, Woo-Taeg;Kim, Hyung-Chul;Kim, Ki-Bum
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.3 s.49
    • /
    • pp.11-20
    • /
    • 2003
  • There are two ways of reducing air pollution. One is the approach of the pollutant source control and the other one is the traffic demand decreasing approach. This study is focusing on the approach of land use planning and optimal location of urban facilities because those are the basic cause to generate transportation demands. So, the purpose of this study would be to analyze the changes of NOx and CO distribution on environmental air by functional hierarchy of urban roads and to make evaluation model of 'Transportation-Land Use -Air Pollution'. It will contribute to improve the air pollution level at same actual traffic generation according to different location.

Evaluation of a Traffic Noise Predictive Model for an Active Noise Cancellation (ANC) System (능동형 소음저감 기법을 위한 도로교통소음 예측 모형 평가 연구)

  • An, Deok Soon;Mun, Sung Ho;An, Oh Seong;Kim, Do Wan
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.11-18
    • /
    • 2015
  • PURPOSES : The purpose of this thesis is to evaluate the effectiveness of an active noise cancellation (ANC) system in reducing the traffic noise level against frequencies from the predictive model developed by previous research. The predictive model is based on ISO 9613-2 standards using the Noble close proximity (NCPX) method and the pass-by method. This means that the use of these standards is a powerful tool for analyzing the traffic noise level because of the strengths of these methods. Traffic noise analysis was performed based on digital signal processing (DSP) for detecting traffic noise with the pass-by method at the test site. METHODS : There are several analysis methods, which are generally divided into three different types, available to evaluate traffic noise predictive models. The first method uses the classification standard of 12 vehicle types. The second method is based on a standard of four vehicle types. The third method is founded on 5 types of vehicles, which are different from the types used by the second method. This means that the second method not only consolidates 12 vehicle types into only four types, but also that the results of the noise analysis of the total traffic volume are reflected in a comparison analysis of the three types of methods. The constant percent bandwidth (CPB) analysis was used to identify the properties of different frequencies in the frequency analysis. A-weighting was applied to the DSP and to the transformation process from analog to digital signal. The root mean squared error (RMSE) was applied to compare and evaluate the predictive model results of the three analysis methods. RESULTS : The result derived from the third method, based on the classification standard of 5 vehicle types, shows the smallest values of RMSE and max and min error. However, it does not have the reduction properties of a predictive model. To evaluate the predictive model of an ANC system, a reduction analysis of the total sound pressure level (TSPL), dB(A), was conducted. As a result, the analysis based on the third method has the smallest value of RMSE and max error. The effect of traffic noise reduction was the greatest value of the types of analysis in this research. CONCLUSIONS : From the results of the error analysis, the application method for categorizing vehicle types related to the 12-vehicle classification based on previous research is appropriate to the ANC system. However, the performance of a predictive model on an ANC system is up to a value of traffic noise reduction. By the same token, the most appropriate method that influences the maximum reduction effect is found in the third method of traffic analysis. This method has a value of traffic noise reduction of 31.28 dB(A). In conclusion, research for detecting the friction noise between a tire and the road surface for the 12 vehicle types needs to be conducted to authentically demonstrate an ANC system in the Republic of Korea.

Analysis on the Efficiency Change in Electric Vehicle Charging Stations Using Multi-Period Data Envelopment Analysis (다기간 자료포락분석을 이용한 전기차 충전소 효율성 변화 분석)

  • Son, Dong-Hoon;Gang, Yeong-Su;Kim, Hwa-Joong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.1-14
    • /
    • 2021
  • It is highly challenging to measure the efficiency of electric vehicle charging stations (EVCSs) because factors affecting operational characteristics of EVCSs are time-varying in practice. For the efficiency measurement, environmental factors around the EVCSs can be considered because such factors affect charging behaviors of electric vehicle drivers, resulting in variations of accessibility and attractiveness for the EVCSs. Considering dynamics of the factors, this paper examines the technical efficiency of 622 electric vehicle charging stations in Seoul using data envelopment analysis (DEA). The DEA is formulated as a multi-period output-oriented constant return to scale model. Five inputs including floating population, number of nearby EVCSs, average distance of nearby EVCSs, traffic volume and traffic congestion are considered and the charging frequency of EVCSs is used as the output. The result of efficiency measurement shows that not many EVCSs has most of charging demand at certain periods of time, while the others are facing with anemic charging demand. Tobit regression analyses show that the traffic congestion negatively affects the efficiency of EVCSs, while the traffic volume and the number of nearby EVCSs are positive factors improving the efficiency around EVCSs. We draw some notable characteristics of efficient EVCSs by comparing means of the inputs related to the groups classified by K-means clustering algorithm. This analysis presents that efficient EVCSs can be generally characterized with the high number of nearby EVCSs and low level of the traffic congestion.

Capacity Analysis of Internet Servers Based on Log-Data Analysis (로그자료 분석을 통한 인터넷 서버의 용량 분석)

  • 김수진;윤복식;이용주;강금석
    • Korean Management Science Review
    • /
    • v.19 no.1
    • /
    • pp.29-38
    • /
    • 2002
  • Due to the rapid increase In the Internet traffic volume, ISPs are faced with the definite need of the expansion of server capacity. In order to Provide prompt services for customers and still prevent excessive facility cost, it is critical to determine the optimum level of internet server capacity. The purpose of this Paper is to provide a simple but effective strategy on the expansion of servers capacity according to the increase in internet traffic. We model an internet server as an M/G/m/m queueing system and derive an efficient method to compute the loss probability which, In turn, Is used as a basis to determine proper server capacity. The Process of estimating the traffic parameter values at each server based on log data analysis is also given. All the procedures are numerically demonstrated through the process of analyzing actual log data collected from a game company.

A Study on Spatial Pattern of Impact Area of Intersection Using Digital Tachograph Data and Traffic Assignment Model (차량 운행기록정보와 통행배정 모형을 이용한 교차로 영향권의 공간적 패턴에 관한 연구)

  • PARK, Seungjun;HONG, Kiman;KIM, Taegyun;SEO, Hyeon;CHO, Joong Rae;HONG, Young Suk
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.2
    • /
    • pp.155-168
    • /
    • 2018
  • In this study, we studied the directional pattern of entering the intersection from the intersection upstream link prior to predicting short future (such as 5 or 10 minutes) intersection direction traffic volume on the interrupted flow, and examined the possibility of traffic volume prediction using traffic assignment model. The analysis method of this study is to investigate the similarity of patterns by performing cluster analysis with the ratio of traffic volume by intersection direction divided by 2 hours using taxi DTG (Digital Tachograph) data (1 week). Also, for linking with the result of the traffic assignment model, this study compares the impact area of 5 minutes or 10 minutes from the center of the intersection with the analysis result of taxi DTG data. To do this, we have developed an algorithm to set the impact area of intersection, using the taxi DTG data and traffic assignment model. As a result of the analysis, the intersection entry pattern of the taxi is grouped into 12, and the Cubic Clustering Criterion indicating the confidence level of clustering is 6.92. As a result of correlation analysis with the impact area of the traffic assignment model, the correlation coefficient for the impact area of 5 minutes was analyzed as 0.86, and significant results were obtained. However, it was analyzed that the correlation coefficient is slightly lowered to 0.69 in the impact area of 10 minutes from the center of the intersection, but this was due to insufficient accuracy of O/D (Origin/Destination) travel and network data. In future, if accuracy of traffic network and accuracy of O/D traffic by time are improved, it is expected that it will be able to utilize traffic volume data calculated from traffic assignment model when controlling traffic signals at intersections.

Realistic Determination of Design Loads and Design Criteria for Bridge Structures (교량구조물의 합리적인 설계하중 결정 및 설계기준)

  • Oh, Byung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.55-66
    • /
    • 1991
  • Presented is a study on the realistic determination of design loads and design criteria for bridge structures. The current bridge design code does not consider realistically the uncertainties inherent in loads and resistances and thus the level of safety varies greatly among the bridge spans. The resonable bridge design loads and design criteria which exhibit uniform reliability among various bridge spans are therefore derived in the present paper. The proposed design loads are determined from the analysis of numerous data obtained from actual traffic survey and the design criteria are based on the advanced concept of load and resistance factor format. The live load factors take into account resonably the effects of traffic volume increase. The proposed design loads and design criteria show uniform safety level for various bridge spans and reasonably consider the effects of traffic volume increase. The present study provides useful and valuable data for new version of our bridge design code.

  • PDF