• Title/Summary/Keyword: Traffic Signal Detection

Search Result 114, Processing Time 0.02 seconds

Application and Evaluation of a Traffic Signal Control Algorithm based on Travel Time Information for Coordinated Arterials (연동교차로를 위한 통행시간기반 신호제어 알고리즘의 현장 적용 및 평가)

  • Jeong, Yeong-Je;Kim, Yeong-Chan
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.179-187
    • /
    • 2009
  • This study develops a real-time signal control algorithm based on sectional travel times and includes a field test and evaluation. The objective function of the signal control algorithm is the equalization of delay of traffic movements, and the main process is calculating dissolved time of the queue and delay using the sectional travel time and detection time of individual vehicles. Then this algorithm calculates the delay variation and a targeted red time and calculates the length of the cycle and phase. A progression factor from the US HCM was applied as a method to consider the effect of coordinating the delay calculation, and this algorithm uses the average delay and detection time of probe vehicles, which were collected during the accumulated cycle for a stabile signal control. As a result of the field test and evaluation through the application of the traffic signal control algorithm on four consecutive intersections at 400m intervals, reduction of delay and an equalization effect of delay against TOD control were confirmed using the standard deviation of delay by traffic movements. This study was conducted to develop a real-time traffic signal control algorithm based on sectional travel time, using general-purpose traffic information detectors. With the current practice of disseminating ubiquitous technology, the aim of this study was a fundamental change of the traffic signal control method.

A Study on Traffic Light Detection (TLD) as an Advanced Driver Assistance System (ADAS) for Elderly Drivers

  • Roslan, Zhafri Hariz;Cho, Myeon-gyun
    • International Journal of Contents
    • /
    • v.14 no.2
    • /
    • pp.24-29
    • /
    • 2018
  • In this paper, we propose an efficient traffic light detection (TLD) method as an advanced driver assistance system (ADAS) for elderly drivers. Since an increase in traffic accidents is associated with the aging population and an increase in elderly drivers causes a serious social problem, the provision of ADAS for older drivers via TLD is becoming a necessary(Ed: verify word choice: necessary?) public service. Therefore, we propose an economical TLD method that can be implemented with a simple black box (built in camera) and a smartphone in the near future. The system utilizes a color pre-processing method to differentiate between the stop and go signals. A mathematical morphology algorithm is used to further enhance the traffic light detection and a circular Hough transform is utilized to detect the traffic light correctly. From the simulation results of the computer vision and image processing based on a proposed algorithm on Matlab, we found that the proposed TLD method can detect the stop and go signals from the traffic lights not only in daytime, but also at night. In the future, it will be possible to reduce the traffic accident rate by recognizing the traffic signal and informing the elderly of how to drive by voice.

A development of traffic information detection using camera

  • 김양주;한민홍
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.316-323
    • /
    • 1995
  • This paper presents an image processing technique to get traffic information such as vehicle volume, velocity, and occupancy for measuring the traffic congestion rate. To obtain these information, two horizontal lines are previously set on the screen. A moving vehicle is detected using the gray level difference on each line, and also template matching method at night. Threshold values are determined by sampling pavement grey level, and updated dynamically to cope with the change of ambient light conditions. These technique is successfully used to calculate vehicle volume, occupancy, and velocity. This study can be applied to traffic signal control system for minimizing traffic congestion in urban areas.

  • PDF

The Decision of the Optimal Shape of Inductive Loop for Real-Time Traffic Signal Control (실시간 교통신호제어를 위한 루프 검지기의 최적형태결정에 관한 연구)

  • 오영태;이철기
    • Journal of Korean Society of Transportation
    • /
    • v.13 no.3
    • /
    • pp.67-86
    • /
    • 1995
  • It requires the detector system which can collect highly reliable traffic data in order to perform the real-time traffic signal control. This study is to decide the optimal shape of inductive loop for the real-time traffic signal control .This loop is located at the stopline in the signalized intersection for DS(Degree of Saturation) control. In order to find out the optimal shape of loop, 6types of experiments were performed . The results of the basic experiments of loops are as follows ; -the optimal number of turns for loop is 3 turns. -the impedance values of the loop detectors are similar to that of NEMA standards -the 1.8${\times}$4.5M loop is excellent for sensitivity in actual detection range of car length comparing to other shape of inductive loops. At the experimental of establishments of the optimal loop shape, it found that 1.8 4.5M loop has the highest values of $\DeltaL$ comparing to other types of loops, It means that the range of Lead-in cable length of this loop. And this loop is highly reliable in occpupancy time. Conclusivley, the 1.8${\times}$4.5M inductive loop is the optimal solution as a stop line loop detector for real -time traffic signal control.

  • PDF

Vehicle Detection and Tracking Using Difference Frame Image for Traffic Measurement System (교통량 측정 시스템에서의 프레임간 차영상을 이용한 차량 검출 및 추적)

  • Kim, Hyung-Soo;Hwang, Gi-Hyeon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.17 no.1
    • /
    • pp.32-39
    • /
    • 2016
  • Intelligent Transport Systems (Intelligent Transportation System: ITS) is a system for inducing a flow of ideal car for using the most advanced technology, it is determined the status of the road, and take appropriate action. In order to be measured at various time points, and is managed, the information about the traffic situation is used image using a computer mainly. The image processing using a computer, it is an easy way to collect parameters of the various traffic in real time, technology has developed more and more. Vehicle detection of transport parameters of intelligent transportation system is a very important technology basically. Therefore, technology detection method using car background images and the contour line extraction method using an edge is used, however, problems have been raised on the accuracy of the detection rate.

Real Time Traffic Signal Recognition Using HSI and YCbCr Color Models and Adaboost Algorithm (HSI/YCbCr 색상모델과 에이다부스트 알고리즘을 이용한 실시간 교통신호 인식)

  • Park, Sanghoon;Lee, Joonwoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.214-224
    • /
    • 2016
  • This paper proposes an algorithm to effectively detect the traffic lights and recognize the traffic signals using a monocular camera mounted on the front windshield glass of a vehicle in day time. The algorithm consists of three main parts. The first part is to generate the candidates of a traffic light. After conversion of RGB color model into HSI and YCbCr color spaces, the regions considered as a traffic light are detected. For these regions, edge processing is applied to extract the borders of the traffic light. The second part is to divide the candidates into traffic lights and non-traffic lights using Haar-like features and Adaboost algorithm. The third part is to recognize the signals of the traffic light using a template matching. Experimental results show that the proposed algorithm successfully detects the traffic lights and recognizes the traffic signals in real time in a variety of environments.

HOG based Pedestrian Detection and Behavior Pattern Recognition for Traffic Signal Control (교통신호제어를 위한 HOG 기반 보행자 검출 및 행동패턴 인식)

  • Yang, Sung-Min;Jo, Kang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.1017-1021
    • /
    • 2013
  • The traffic signal has been widely used in the transport system with a fixed time interval currently. This kind of setting time was determined based on experience for vehicles to generate a waiting time while allowing pedestrians crossing the street. However, this strict setting causes inefficient problems in terms of economic and safety crossing. In this research, we propose a monitoring algorithm to detect, track and check pedestrian crossing the crosswalk by the patterns of behavior. This monitoring system ensures the safety for pedestrian and keeps the traffic flow in efficient. In this algorithm, pedestrians are detected by using HOG feature which is robust to illumination changes in outdoor environment. According to a complex computation, the parallel process with the GPU as well as CPU is adopted for real-time processing. Therefore, pedestrians are tracked by the relationship of hue channel in image sequence according to the predefined pedestrian zone. Finally, the system checks the pedestrians' crossing on the crosswalk by its HOG based behavior patterns. In experiments, the parallel processing by both GPU and CPU was performed so that the result reaches 16 FPS (Frame Per Second). The accuracy of detection and tracking was 93.7% and 91.2%, respectively.

Development and Evaluation of a Left-Turn Actuated Traffic Signal Control Strategy using Image Detectors (영상검지기를 이용한 좌회전 감응식 신호제어전략 개발)

  • Eun, Ji-Hye;O, Yeong-Tae;Yun, Il-Su;Lee, Cheol-Gi;Kim, Nam-Seon;Han, Ung-Gu
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.2
    • /
    • pp.111-121
    • /
    • 2011
  • This paper discusses a method for optimizing the semi-actuated traffic signal control system by adjusting the initial interval according to the number of vehicles waiting for the green light in the actuated phase. We also present a Left-Turn actuated traffic signal control strategy that examines the vehicular noise in the detection area and determines the phase extension and the gap-out. In order to detect the vehicles in real-time, an image detector's Video Image Tracking technology was adopted. A 'Zone in Zone'method was implemented, and the image detection area is segmented into three zones: 1) Zone1 for verifying a vehicles obligatory presence, 2) Zone2 for counting the standby vehicles, and 3) Zone3 for examining the number of vehicles that have passed. The on-site assessment of the Left Turn Actuated Control is carried out using CORSIM, and the results show that the Control Delay decreased by 23.10%, 15.06%, and 4.34% compared to the delays resulted from pre-timed control, semi-actuated control-1 and semi-actuated control-2 traffic signal control systems respectively. The Queue Time also decreased by 36.24%, 20.10% and the Total Time by 14.36%, 7.02% for the same scenario. Which clearly demonstrates the operational efficiency. A sensitivity analysis reveals that the improvement from the propose traffic control strategy tends to increase as the through traffic volume reaches a saturated condition and the left-turn traffic volume decreases.

Development of the Algorithm for Traffic Accident Auto-Detection in Signalized Intersection (신호교차로 내 실시간 교통사고 자동검지 알고리즘 개발)

  • O, Ju-Taek;Im, Jae-Geuk;Hwang, Bo-Hui
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.97-111
    • /
    • 2009
  • Image-based traffic information collection systems have entered widespread adoption and use in many countries since these systems are not only capable of replacing existing loop-based detectors which have limitations in management and administration, but are also capable of providing and managing a wide variety of traffic related information. In addition, these systems are expanding rapidly in terms of purpose and scope of use. Currently, the utilization of image processing technology in the field of traffic accident management is limited to installing surveillance cameras on locations where traffic accidents are expected to occur and digitalizing of recorded data. Accurately recording the sequence of situations around a traffic accident in a signal intersection and then objectively and clearly analyzing how such accident occurred is more urgent and important than anything else in resolving a traffic accident. Therefore, in this research, we intend to present a technology capable of overcoming problems in which advanced existing technologies exhibited limitations in handling real-time due to large data capacity such as object separation of vehicles and tracking, which pose difficulties due to environmental diversities and changes at a signal intersection with complex traffic situations, as pointed out by many past researches while presenting and implementing an active and environmentally adaptive methodology capable of effectively reducing false detection situations which frequently occur even with the Gaussian complex model analytical method which has been considered the best among well-known environmental obstacle reduction methods. To prove that the technology developed by this research has performance advantage over existing automatic traffic accident recording systems, a test was performed by entering image data from an actually operating crossroad online in real-time. The test results were compared with the performance of other existing technologies.

Enhancement of Signal-to-noise Ratio Based on Multiplication Function for Phi-OTDR

  • Li, Meng;Xiong, Xinglong;Zhao, Yifei;Ma, Yuzhao
    • Current Optics and Photonics
    • /
    • v.2 no.5
    • /
    • pp.413-421
    • /
    • 2018
  • We propose a novel methodology based on the multiplication function to improve the signal-to-noise ratio (SNR) for vibration detection in a phi optical time-domain reflectometer system (phi-OTDR). The extreme-mean complementary empirical mode decomposition (ECEMD) is designed to break down the original signal into a set of inherent mode functions (IMFs). The multiplication function in terms of selected IMFs is used to determine a vibration's position. By this method, the SNR of a phi-OTDR system is enhanced by several orders of magnitude. Simulations and experiments applying the method to real data prove the validity of the proposed approach.