• Title/Summary/Keyword: Traffic Rate Analysis

Search Result 684, Processing Time 0.033 seconds

Precedence Analysis of Traffic Safety Facilities Installation for Traffic Accidents (교통안전시설 설치의 교통사고 발생에 대한 선행성 분석)

  • Joo, Il-Yeob
    • Korean Security Journal
    • /
    • no.55
    • /
    • pp.31-55
    • /
    • 2018
  • The purpose of this study is to analyze the precedence analysis of traffic safety facilities installation for traffic accidents. The main results were as follows. First, the precedence of the number of traffic safety signs installation for the number of traffic accident is follows. The number of traffic safety signs[total number] (time precedent 1), the number of traffic safety signs[attention] (time precedent 7), the number of traffic safety signs[regulation] (time precedent 7), the number of traffic safety signs[indication] (time precedent 4) precede the number of traffic accidents as negative(-) relationship. Second, the number of traffic signal equipments[pedestrian lamp] (time precedent 2) precedes the number of traffic accidents as negative(-) relationship. Third, the precedence of the increase/decrease rate of traffic safety facilities installation for the increase/decrease rate of traffic accident is follows. The increase/decrease rate of traffic safety signs[total number] (time precedent 1), the increase/decrease rate of traffic safety signs[attention] (time precedent 1), the increase/decrease rate of traffic safety signs[indication] (time precedent 1), the increase/decrease rate of traffic safety signs[auxiliary] (time precedent 1) precede the increase/decrease rate of traffic accidents as negative(-) relationship. Fourth, the increase/decrease rate of traffic signal equipments[pedestrian lamp] (time precedent 0) accompanies the increase/decrease rate of traffic accidents as positive (+) relationship.

Analysis of Diversion Rate using Expressway Traffic Data(FTMS, TCS): Focusing on Maesong~Balan IC at Seohaean Expressway (고속도로 교통데이터(FTMS, TCS)를 이용한 경로전환율 분석: 서해안고속도로 매송~발안 구간을 중심으로)

  • Ko, Han-Geom;Choi, Yoon-Hyuk;Oh, Young-Tae;Choi, Kee-Choo
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.3
    • /
    • pp.31-41
    • /
    • 2012
  • Due to growing interests in the distribution of traffic volume through information dissemination such as VMS and traffic broadcasting system, the research on the driver's reaction and effect of the traffic report has continued. In this study, we propose a methodology, which estimates the traffic volume of diversion and the consequential diversion rate using FTMS data and TCS data, and the estimation is based on the analysis of the national highway and IC, in which real-time FTMS and TCS data are established. We also calculate the diversion rate of actual targeted sections and analyze the changes in time and spatial diversion rate. In this study, we define a deviation (considering a deviation due to dynamic properties of traffic conditions) found when the outflow traffic volume is temporarily higher than the average outflow traffic volume on a relevant time slot after providing traffic information. The diverting volume is considered to be caused by the traffic information, and the study determines the ratio of traffic volume on highways to that of route diversion as the diversion rate. The analysis on changes in the diversion rate in accordance with the time flow, the initial change in the diversion rate on upstream IC that first acquires the report on the traffic congestion is significant. After that, the change in the diversion rate on upstream IC affects the route diversion on downstream IC with spatial and time flow, and this again leads the change in upstream IC. Thereby, we confirmed that there is a feedback-control circulation system in the route diversion.

Analysis of Traffic Characteristics of General National Roads by Snowfall in Gangwon-do (강원도에서 적설에 의한 일반국도 교통 특성 분석)

  • Jo, Eun Su;Kwon, Tae-Yong;Kim, Hyunuk;Kim, Kyu Rang;Kim, Seung Bum
    • Atmosphere
    • /
    • v.31 no.2
    • /
    • pp.157-170
    • /
    • 2021
  • To investigate the effect of snowfall on the traffic of general roads in Gangwon-do, case analysis was performed in Gangneung, Pyeongchang, and Chuncheon using ASOS (Automated Synoptic Observing System) snowfall data and VDS (Vehicle Detector System) traffic data. First, we analyzed how much the traffic volume and speed decrease in snowfall cases on regional roads compared to non-snow cases, and the characteristics of monthly reduction due to snowfall were investigated. In addition, Pearson correlation analysis and regression analysis were performed to quantitatively grasp the effect of snowfall on traffic volume and speed, and sensitivity tests for snowfall intensity and cumulative snowfall were performed. The results showed that the amount of snowfall caused decrease both in the traffic volume and speed from usual (non-snowfall) condition. However, the trend was different by region: The decrease rate in traffic volume was in the order of Gangneung (17~22%), Chuncheon (14~17%), and Pyeongchang (11~14%). The decrease rate in traffic speed was in the order of Chuncheon (9~10%), Gangneung (8~9%), Pyeongchang (5~6%). No significant results were found in the monthly decrease rate analysis. In all regions, traffic volume and speed showed a negative correlation with snowfall. It was confirmed that the greater the amount of traffic entering the road, the greater the slope of the trend line indicating the change in snowfall due to the traffic volume. As a result of the sensitivity test for snowfall intensity and cumulative snowfall, the snowfall information at intervals of 6-hours was the most significant.

Development of Incident Detection Method for Interrupted Traffic Flow by Using Latin Square Analysis (라틴방격분석법을 이용한 단속류도로에서의 유고감지기법 개발)

  • Mo, Mooki;Kim, Hyung Jin;Son, Bongsoo;Kim, Dae Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5D
    • /
    • pp.623-631
    • /
    • 2011
  • In this study, a new method which can detect incidents in interrupted traffic flow was suggested. The applied method of detecting the incident is the Latin Square Analysis Method by using traffic traits. In the Latin Square Analysis, unlike other previously tried methods, the traffic situation was analyzed, this time considering the changes in traffic traits for each lane and for each time period. The data used in this study were the data observed in the actual field with fine weather. The traffic volumes, the vehicle speed and the occupancy rate were collected on the interrupted flow road. The data were collected in normal and incident situations. The incidents occurred on the second lane, the time of persistent incidents was set to 10 minutes. The Latin Square Analyses were performed using the collected data with the traffic volume, with the vehicle speed or with the occupancy rate. As a result in this study, in case of detecting the traffic situations with Latin Square Analysis, it will be more successful to apply traffic volume to detect the traffic situations than to apply other factors.

Performance Analysis for ABR Congestion Control Algorithm of ATM Switch using Self-Similar Traffic (자기 유사한 트래픽을 이용한 ATM 스위치의 ABR 혼잡제어 알고리즘의 성능분석)

  • Jin, Sung-Ho;Yim, Jae-Hong
    • The KIPS Transactions:PartC
    • /
    • v.10C no.1
    • /
    • pp.51-60
    • /
    • 2003
  • One of the most important matters in designing network and realizing service, is to grip on the traffic characteristics. Conventional traffic prediction and analysis used the models which based on the Poisson or Markovian. Recently, experimental research on the LAN, WAN and VBR traffic properties have been pointed rut that they weren't able to display actual real traffic specificities because the models based on the Poisson assumption had been underestimated the long range dependency of network traffic and self-similar peculiarities, it has been lately presented that the new approach method using self-similarity characteristics as similar as the real traffic models. Therefore, in this paper, we generated self-similar data traffic like real traffic as background load. On the existing ABR congestion control algorithm, we analyzed by classify into ACR, buffer utilization. cell drop rate, transmission throughput with the representative EFCI, ERICA, EPRCA and NIST twitch algorithm to show the efficient reaction about the burst traffic.

The Study on the Error Rate Analysis for the Occupied Bandwidth of Internet Real-time Traffic (인터넷 실시간 트래픽의 점유대역폭 오차율 분석에 관한 연구)

  • Lee, Sung-Hwa
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.167-172
    • /
    • 2012
  • This paper aims on comparative analysis of measuring efficiency of occupied bandwidth between MRTG average traffic and internet real-time traffic by measuring the type of internet application service. Through this analysis, the user can measure their internet line and occupy a certain amount of bandwidth and will have to invest on how much is compared to MRTG maximum traffic graph. The result of measurement proved 1.4 times to 20 times occupied bandwidth error rate between real-time and average traffic by the type of internet services.

Relationships between Diversion Rates and Traffic Conditions on Expressways (고속도로 소통상황과 우회율과의 상관분석)

  • Choe, Yun-Hyeok;Choe, Gi-Ju;Go, Han-Geom
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.2
    • /
    • pp.57-71
    • /
    • 2009
  • Due to increasing interest in dispersion of traffic flows through providing traffic information, there has been much research of driver behavior and effectiveness of diversion. In this paper the authors intend to analyze how a diversion was determined and its effects through correlation analysis between diversion rates estimated by actual surveys and the traffic conditions. Through speed-flow analysis, the diversion mechanism was found. When travel speed decreased, detour volume increased. Then when the traffic volume was decreased through an increase of diversion and traffic conditions got better, the detour volume decreased again. In addition, the authors found negative correlation between the diversion rate and travel speed through correlation analysis. It shows that there were various relationships between diversion rates and traffic conditions according to congestion level and direction of traffic. Finally, it is suggested that the regression equation for calculating the diversion rate with the traffic flows, travel speed, and travel time as variables has a coefficient of determination of 38.5%. It means that traffic conditions on expressways take about 40% of driver's decision-making for diversion.

Methodology for Real-time Detection of Changes in Dynamic Traffic Flow Using Turning Point Analysis (Turning Point Analysis를 이용한 실시간 교통량 변화 검지 방법론 개발)

  • KIM, Hyungjoo;JANG, Kitae;KWON, Oh Hoon
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.3
    • /
    • pp.278-290
    • /
    • 2016
  • Maximum traffic flow rate is an important performance measure of operational status in transport networks, and has been considered as a key parameter for transportation operation since a bottleneck in congestion decreases maximum traffic flow rate. Although previous studies for traffic flow analysis have been widely conducted, a detection method for changes in dynamic traffic flow has been still veiled. This paper explores the dynamic traffic flow detection that can be utilized for various traffic operational strategies. Turning point analysis (TPA), as a statistical method, is applied to detect the changes in traffic flow rate. In TPA, Bayesian approach is employed and vehicle arrival is assumed to follow Poisson distribution. To examine the performance of the TPA method, traffic flow data from Jayuro urban expressway were obtained and applied. We propose a novel methodology to detect turning points of dynamic traffic flow in real time using TPA. The results showed that the turning points identified in real-time detected the changes in traffic flow rate. We expect that the proposed methodology has wide application in traffic operation systems such as ramp-metering and variable lane control.

Traffic Analysis and Modeling for Network Games (네트워크 게임 트래픽 분석 및 모델링)

  • Park Hyo-Joo;Kim Tae-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.5
    • /
    • pp.635-648
    • /
    • 2006
  • As the advances of Internet infra structure and the support of console and mobile for network games, the industry of online game has been growing rapidly, and the online game traffic in the Internet has been increasing steadily. For design and simulation of game network, the analysis of online game traffic have to be preceded. Therefore a number of papers have been proposed for the purpose of analyzing the traffic data of network games and providing the models. We make and use GameNet Analyzer as a dedicated tool for game traffic measurement and analysis in this paper. We measure the traffic of FPS Quake 3, RTS Starcraft and MMORPG World of Warcraft (WoW), and analyze the packet size, packet IAT(inter-arrival time), data rate and packet rate according to the number of players and in-game behaviors. We also present the traffic models using measured traffic data. These analysis and models of game traffic can be used for effective network simulation, performance evaluation of game network and the design of online games.

  • PDF

Evaluating of Risk Order for Urban Road by User Cost Analysis (사용자비용분석을 통한 간선도로 위험순위 산정에 관한 연구)

  • Park, Jung-Ha;Park, Tae-Hoon;Im, Jong-Moon;Park, Je-Jin;Yoon, Pan;Ha, Tae-Jun
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.77-86
    • /
    • 2005
  • Level of service(LOS) is a quantify measure describing operational conditions within a traffic stream, generally, in terms of such service measures as speed, travel time, freedom to measures, traffic interruptions, comfort and convenience. The LOS is leveled by highway facilities according to measure of effectiveness(MOE) and then used to evaluate performance capacity. The current evaluation of a urban road is performed by only a aspect of traffic operation without any concepts of safety. Therefore, this paper presents a method for evaluation of risk order for urban road with new MOE, user cost analysis, considering both smooth traffic operation(congestion) and traffic safety(accident). The user coat is included traffic accident cast by traffic safety and traffic congestion cost by traffic operation. First of all, a number of traffic accident and accident rate by highway geometric is inferred from urban road traffic accident prediction model (Poul Greibe(2001)) Secondly, a user cost is inferred as traffic accident cast and traffic congestion cost is putting together. Thirdly, a method for evaluation of a urban road is inferred by user cost analysis. Fourthly a accident rate by segment predict with traffic accidents and data related to the accidents in $1996{\sim}1998$ on 11 urban road segments, Gwang-Ju, predicted accident rate. Traffic accident cost predict using predicted accident rate, and, traffic congestion cost predict using predicted average traffic speed(KHCM). Fifthly, a risk order are presented by predicted user cost at each segment in urban roads. Finally, it si compared and evaluated that LOS of 11 urban road segments, Gwang-Ju, by only a aspect of traffic operation without any concepts of safety and risk order by a method for evaluation of urban road in this paper.