• Title/Summary/Keyword: Traffic Engineering

Search Result 5,452, Processing Time 0.035 seconds

Driver Route Choice Models for Developing Real-Time VMS Operation Strategies (VMS 실시간 운영전략 구축을 위한 운전자 경로선택모형)

  • Kim, SukHee;Choi, Keechoo;Yu, JeongWhon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.409-416
    • /
    • 2006
  • Real-time traveler information disseminated through Variable Message Signs (VMS) is known to have effects on driver route choice decisions. In the past, many studies have attempted to optimize the system performance using VMS message content as the primary control variable of driver route choice. This research proposes a VMS information provision optimization model which searches the best combination of VMS message contents and display sequence to minimize the total travel time on a highway network considered. The driver route choice models under VMS information provision are developed using a stated preference (SP) survey data in order to realistically capture driver response behavior. The genetic algorithm (GA) is used to find the optimal VMS information provision strategies which consists of the VMS message contents and the sequence of message display. In the process of the GA module, the system performance is measured using micro traffic simulation. The experiment results highlight the capability of the proposed model to search the optimal solution in an efficient way. The results show that the traveler information conveyed via VMS can reduce the total travel time on a highway network. They also suggest that as the frequency of VMS message update gets shorter, a smaller number of VMS message contents performs better to reduce the total travel time, all other things being equal.

Ship Collision Risk of Suspension Bridge and Design Vessel Load (현수교의 선박충돌 위험 및 설계박하중)

  • Lee, Seong Lo;Bae, Yong Gwi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.11-19
    • /
    • 2006
  • In this study ship collision risk analysis is performed to determine the design vessel for collision impact analysis of suspension bridge. Method II in AASHTO LRFD bridge design specifications which is a more complicated probability based analysis procedure is used to select the design vessel for collision impact. From the assessment of ship collision risk for each bridge pier exposed to ship collision, the design impact lateral strength of bridge pier is determined. The analysis procedure is an iterative process in which a trial impact resistance is selected for a bridge component and a computed annual frequency of collapse(AF) is compared to the acceptance criterion, and revisions to the analysis variables are made as necessary to achieve compliance. The acceptance criterion is allocated to each pier using allocation weights based on the previous predictions. This AF allocation method is compared to the pylon concentration allocation method to obtain safety and economy in results. This method seems to be more reasonable than the pylon concentration allocation method because AF allocation by weights takes the design parameter characteristics quantitatively into consideration although the pylon concentration allocation method brings more economical results when the overestimated design collision strength of piers compared to the strength of pylon is moderately modified. The design vessel for each pier corresponding with the design impact lateral strength obtained from the ship collision risk assessment is then selected. The design impact lateral strength can vary greatly among the components of the same bridge, depending upon the waterway geometry, available water depth, bridge geometry, and vessel traffic characteristics. Therefore more researches on the allocation model of AF and the selection of design vessel are required.

Ship Collision Risk Assessment for Bridges (교량의 선박충돌위험도 평가)

  • Lee, Seong Lo;Bae, Yong Gwi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.1-9
    • /
    • 2006
  • An analysis of the annual frequency of collapse(AF) is performed for each bridge pier exposed to ship collision. From this analysis, the impact lateral resistance can be determined for each pier. The bridge pier impact resistance is selected using a probability-based analysis procedure in which the predicted annual frequency of bridge collapse, AF, from the ship collision risk assessment is compared to an acceptance criterion. The analysis procedure is an iterative process in which a trial impact resistance is selected for a bridge component and a computed AF is compared to the acceptance criterion, and revisions to the analysis variables are made as necessary to achieve compliance. The distribution of the AF acceptance criterion among the exposed piers is generally based on the designer's judgment. In this study, the acceptance criterion is allocated to each pier using allocation weights based on the previous predictions. To determine the design impact lateral resistance of bridge components such pylon and pier, the numerical analysis is performed iteratively with the analysis variable of impact resistance ratio of pylon to pier. The design impact lateral resistance can vary greatly among the components of the same bridge, depending upon the waterway geometry, available water depth, bridge geometry, and vessel traffic characteristics. More researches on the allocation model of AF and the determination of impact resistance are required.

Field Evaluation of Traffic Wandering Effect on Asphalt Pavement Responses (차량의 횡방향 주행이격에 의한 아스팔트 콘크리트 포장의 응답특성 분석)

  • Seo, Youngguk;Kwon, Soon-Min;Lee, Jae-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.453-459
    • /
    • 2006
  • This paper presents an experimental evaluation of wandering effect on asphalt concrete pavement responses. A laser-based wandering system has been developed and its performance is verified under various field conditions. The portable wandering system composed of two laser sensors with Position Sensitive Devices can allow one to measure the distance between laser sensors and tire edges of moving vehicle. Therefore, lateral position of each wheel on the pavement can be determined in a real time manner. Pavement responses due to different loading paths are investigated using a roll over test which is carried out on one of asphalt surfaced pavements in the Korea Highway Corporation test road. The pavement section (A5) consists of 5 cm thick surface course; 7 cm intermediate course; and 18 mm base course, and is heavily instrumented with strain gauges, vertical soil pressure cells and thermo-couples. From the center of wheel paths, seven equally-spaced lateral loading paths are carefully selected over an 140 cm wandering zone. Test results show that lateral horizontal strains in both surface and intermediate courses are mostly compressive right under the loading path and tensile strains start to develop as the loading offset becomes 40 cm from the wheel path. The development of the vertical stresses in the top layers of subbase and anti-frost is found to be minimal once the loading offset becomes 50 cm.

Life-Cycle Cost Effective Optimal Seismic Retrofit and Maintenance Strategy of Bridge Structures - (II) Methodology for Life-Cycle Cost Analysis (교량의 생애주기비용 효율적인 최적 내진보강과 유지관리전략 - (II) 생애주기비용해석 방법론)

  • Lee, Kwang-Min;Cho, Hyo-Nam;Chung, Jee-Seung;An, Hyoung-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.977-988
    • /
    • 2006
  • The goal of this study is to develop a realistic methodology for determination of the Life-Cycle Cost (LCC)-effective optimal seismic retrofit and maintenance strategy of deteriorating bridges. The proposed methodology is based on the concept of minimum LCC which is expressed as the sum of present value of seismic retrofit costs, expected maintenance costs, and expected economic losses with the constraints such as design requirements and acceptable risk of death. The proposed methodology is applied to the LCC-effective optimal seismic retrofit and maintenance strategy of a steel bridge considered as a example bridge in the accompanying study, and various conditions such as corrosion environments and Average Daily Traffic Volumes (ADTVs) are considered to investigate the effects on total expected LCC. In addition, to verify the validity of the developed methodology, the results are compared with the existing methodology. From the numerical investigation, it may be positively expected that the proposed methodology can be effectively utilized as a practical tool for the decision-making of LCC-effective optimal seismic retrofit and maintenance strategy of deteriorating bridges.

The Examination of Load Carrying Capacity Based on Existing Data for Improved Safety Assessment Method of Expressway Bridges (고속도로 교량의 개선된 안전성 평가방안을 위한 실측자료에 기초한 공용 내하력 검토)

  • Lee, Jong Ho;Han, Sung Ho;Sin, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6A
    • /
    • pp.597-605
    • /
    • 2009
  • The safety of expressway bridges was estimated by checking the external condition rank based on the nondestructive inspection and material test and by measuring load carrying capacity based on the result of load test. Although the load carrying capacity of the bridges was clearly low compared to the design standard, it was examined that many of the bridges have good external condition rank relatively. Also, it can be assured that load carrying capacity shows a considerable difference according to various condition even though the bridges have similar construction year and a structural type. Therefore, this study showed various problems of the current safety measurement of expressway bridges by considering the status of the expressway bridges, external condition rank, and method of safety diagnosis and repair, rehabilitation for maintenance. Based on the existing data of over 400 expressway bridges, the load carrying capacity was analyzed quantitatively considering bridge type, serviced life, design live load, external condition rank and traffic count as variables. The result of this study will be expected to provide the basic information for a reasonable safety assessment of expressway bridge.

GIS Optimization for Bigdata Analysis and AI Applying (Bigdata 분석과 인공지능 적용한 GIS 최적화 연구)

  • Kwak, Eun-young;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.171-173
    • /
    • 2022
  • The 4th industrial revolution technology is developing people's lives more efficiently. GIS provided on the Internet services such as traffic information and time information makes people getting more quickly to destination. National geographic information service(NGIS) and each local government are making basic data to investigate SOC accessibility for analyzing optimal point. To construct the shortest distance, the accessibility from the starting point to the arrival point is analyzed. Applying road network map, the starting point and the ending point, the shortest distance, the optimal accessibility is calculated by using Dijkstra algorithm. The analysis information from multiple starting points to multiple destinations was required more than 3 steps of manual analysis to decide the position for the optimal point, within about 0.1% error. It took more time to process the many-to-many (M×N) calculation, requiring at least 32G memory specification of the computer. If an optimal proximity analysis service is provided at a desired location more versatile, it is possible to efficiently analyze locations that are vulnerable to business start-up and living facilities access, and facility selection for the public.

  • PDF

A Study on the Field Application of the Measurement Technique for Static Displacement of Bridge Using Ambient Vibration (상시 진동을 이용한 교량 정적 처짐 산정 기술의 현장 적용성 연구)

  • Sang-Hyuk Oh;Dae-Joong Moon;Kwang-Myong Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.355-363
    • /
    • 2023
  • In safety assessment of a aged bridge, dynamic characteristics and displacement are directly related to the rigidity of the structural system, especially displacement is the most important factor as the physical quantity that the bridge user can directly detect. However, in order to measure the displacement of the bridge, it is difficult to install displacement sensors at the bottom of the bridge and conduct traffic blocking and loading tests, resulting in increased costs or impossible measurements depending on the bridge's environment. In this study, a method of measuring the displacement of a bridge using only accelerometers without installing displacement sensors and ambient vibration without a loading test was proposed. For the analysis of bridge dynamic characteristics and displacement using ambient vibration, the mode shape and natural frequency of the bridge were extracted using a TDD technique known to enable quick analysis with simple calculations, and the unit load displacement of the bridge was analyzed through flexibility analysis to calculate static displacement. To verify this proposed technology, an on-site test was conducted on C Bridge, and the results were compared with the measured values of the loading test and the structural analysis data. As a result, it was confirmed that the mode shape and natural frequency were 0.42 to 1.13 % error ratio, and the maximum displacement at the main span was 3.58 % error ratio. Therefore, the proposed technology can be used as a basis data for indirectly determine the safety of the bridge by comparing the amount of displacement compared to the design and analysis values by estimating the displacement of the bridge that could not be measured due to the difficulty of installing displacement sensors.

A Study on Evaluation Parameters of Safety City Models (안전도시 모델의 평가지표에 관한 연구)

  • Joon-Hak Lee;Okkyung Yuh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.2
    • /
    • pp.1-13
    • /
    • 2023
  • As interest in urban safety has increased since COVID-19, various institutions have developed and used indicators that evaluate the safety city model. Yongsan-gu was ranked No. 1 in 2021 by Social Safety Index evaluation and was selected as the safest city in Korea. However, the Itaewon disaster in Yongsan-gu in 2022 caused many casualties. The study of indicators for evaluating cities' safety was necessary. This study aims to examine domestic and foreign safe city models and review the differences between each model and the indicators used to evaluate safe cities. As a result of collecting 11 safe city models and analyzing each evaluation index, safe city models can be classified into program-based safe city models, such as the World Health Organization's International safe community and the UN Office for Disaster Risk Reduction's International Safe city. Considering the diversification of threats to safety, it is reasonable to comprehensively consider digital security, health safety, infrastructure safety, personal safety, environmental safety, traffic safety, fire safety, crime safety, life safety, suicide, and infectious diseases when evaluating safe cities as evaluation parameters.

Location Classification and Its Utilization for Illegal Parking Enforcement: Focusing on the Case of Gyeonggi (불법주정차 단속을 위한 지역(장소) 분류 및 활용 방안: 경기도를 중심으로)

  • Hyeon Han;So-yeon Choe;So-Hyun Lee
    • Information Systems Review
    • /
    • v.25 no.4
    • /
    • pp.113-130
    • /
    • 2023
  • Due to economic development and increasing gross national income, the number of automobiles continues to rise, leading to a serious issue of illegal parking due to limited road conditions and insufficient parking facilities. Illegal parking causes significant inconvenience and displeasure to people and can even result in accidents and loss of lives. The severity of accidents and their consequences, related to the growing number of vehicles and illegal parking, is escalating, particularly in the metropolitan areas. Consequently, efforts are being made to address this problem as a cause of social issues and come up with measures to reduce illegal parking. In particular, half of the public complaints in the metropolitan area are related to illegal parking, and the highest physical and human damage occurs in Gyeonggi. Thus, this study aims to use machine learning techniques based on data related to illegal parking in Suwon city, Gyeonggi, to categorize regional characteristics and propose effective measures to crack down on illegal parking. Additionally, practical, social, policy, and legal measures to decrease illegal parking in the metropolitan area are suggested. This study has academic significance in that it solved the problem of illegal parking, which is mentioned as one of the social problems that cause traffic congestion, by classifying regional characteristics using K-prototype, a machine learning algorithm. Furthermore, the results of this study contribute to practical and social aspects by providing measures to decrease illegal parking in the metropolitan area.