• Title/Summary/Keyword: Traction performance

Search Result 329, Processing Time 0.033 seconds

Insulation Performance Estimation of Main Relays by Partial Discharges (부분방전에 의한 주계전기의 절연성능 평가)

  • Kil, Gyung-Suk;Kim, Il-Kwon;Park, Dae-Won;Song, Jae-Yong;Lee, Gang-Won;Cho, Eun-Je
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.4
    • /
    • pp.388-392
    • /
    • 2007
  • A new dielectric test on main relays of electric traction vehicles, the partial discharge(PD) test, is proposed. The PD test will not affect the insulation performance of specimen during the test and provide much more detailed information on insulation, the types of defects, and so on. Insulation performance of relays is estimated by discharge inception voltage(DIV), discharge extinction voltage (DEV), and apparent charge as a function of test voltage and time. Three main relays of different manufacturing date were estimated by applying AC voltage with three patterns in ranges of $0{\sim}1,200[V]$. From the results, we could estimate insulation state and which types of defects exist in them.

System Design Considering the required performance of the Levitation Control in Maglev (자기부상열차의 부상제어 요구 성능을 고려한 시스템의 설계)

  • Jo, Jeong-Min;Lee, Jong-Min;Kang, Byung-Gwan;Park, Sung-Ho;Kim, Cheol-Ho;Choi, Jong-Mook;Kim, Kuk-Jin
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1024-1031
    • /
    • 2008
  • The performance of magnetic levitation controller is affected from not only levitation control algorithm but also the interaction between compositing system, so it is important to design maglev system considering the character of magnetic levitation controller in order to get the required performance of Maglev. The factors affecting the levitation controller of maglev are the dynamics of levitation magnet, the carrying weight of the overall system, the normal force and lateral force of traction motor and rail condition. In this paper the interaction between magnet and vehicle weight is analysed on side of stability of levitation controller in order to get the required performance of levitation controller.

  • PDF

Design and Performance Study of Propulsion System for Korean High Speed Train (한국형 고속전철의 추진시스템 설계 및 성능 연구)

  • 박광복;김현철
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.349-358
    • /
    • 1998
  • This study was carried out about the design and the performance study of propulsion system for Korean High Speed Train of maximum operating speed of 350km/h. The propulsion system was studied to two parts the formation of power transmission and the performance of traction system base on Korean-TGV. For maximum operating speed of 350km/h at Seoul-Pusan high speed line, the power of train should be have the remaining acceleration of 0.058m/s/s and the slopeability of 6%o. This performance study of propulsion system would be continued for defining of adhesion factor, friction factor and aerodynamic factor assumed to analysis and simulation.

  • PDF

Characteristic Analysis and Test of IPMSM for e-4WD of the Hybrid Electric Vehicle (HEV용 e-4WD 구동을 위한 매입형 영구자석 동기전동기의 특성해석 및 시험)

  • Jung, Soo-Jin;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.777-784
    • /
    • 2016
  • In this paper, the performance design and analysis for an Interior Permanent-Magnet Synchronous Motor (IPMSM) that will be used as a traction motor in the e-4WD system of hybrid SUV(Sports Utility Vehicle) and RV(Recreational Vehicle), are investigated using finite element method. In order to improve the accuracy of design, the tolerances of parts and assemblies as well as the material properties of permanent magnet, stator, rotor and winding etc. are considered under the conditions similar to real driving state of motor. Both no load performance test and maximum load performance test, in which real driving state and cooling condition have been considered, are also implemented via proto sample build to verify the validity of motor's performance design.

A study on Development of train performance analysis model for the high-speed electric multiple unit 400km/h experimental (차세대 고속열차 성능해석 모델 개발)

  • Lee, Tae-Hyung;Park, Choon-Soo;Kim, Young-Guk;Choi, Sung-Hoon;Kim, Sang-Soo;Han, In-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.524-528
    • /
    • 2008
  • The HEMU-400X(High-speed Electric Multiple Unit 400km/h eXperimental) project starts in 2007. It is required to analysis and simulate the train performance throughout the project life cycle for a successful completion of the project. This paper is devoted to the development of a train performance analysis model for the high-speed electric multiple unit 400km/h experimental. The model consist of running resistance model, train model, traction model and braking model. So, this paper represents the results of the train performance analysis.

  • PDF

Implementation of HIL Method to Analyze Driving Characteristic of Hybrid Electric Vehicle (하이브리드 자동차 구동 특성 분석을 위한 HIL 방식의 구현)

  • Oh, Sung Chul
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.3 no.2
    • /
    • pp.100-105
    • /
    • 2011
  • By adopting HIL(Hardware-in-the-Loop), component characteristics in vehicle environment can be obtained without implementing component in the vehicle. In this paper, when specific motor is adopted as traction motor in hybrid electric vehicle HIL implementation procedures are explained. In order to implement HIL method motor testing. vehicle performance simulator and load characteristic are explained. Vehicle controller used in simulator is directly uploaded in real controller. Especially as a load dynamometer actively controlled motor system is used without connecting conventional mechanical inertia. Motor characteristics are obtained using HIL implementation when test motor is used as a traction motor for parallel hybrid electric vehicle. Proposed method can be used as experimental equipment to educate driving characteristics of hybrid electric vehicle.

  • PDF

A Study On Field Test of IGBT Type Propulsion System fo Electric oilway (전동차용 IGBT형 추진제어장치의 본선시험에 관한 연구)

  • 정만규;고영철;방이석;서광덕
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.5
    • /
    • pp.515-521
    • /
    • 2000
  • This paper describes the field test results of IGBT VVVF inverter for the railway propulsion system. The 1,650kVA IGBT VVVF inverter has been developed. Therefore, the field test is performed in SMG 6 Line to confirm its the reliability and performance. The train consists of 4M4T and the electrical equipment for field test are as follows : VVVF inverter 4 sets, 16 traction motors and 2 SIVs. The propulsion system is composed with 1C4M(1-Controller 4-Motors). The results of propulsion system which have the excellent acceleration/deceleration and the jerk characteristics as well as starting ability on slope are taken through the field test.

  • PDF

Analysis of Dynamic Performance of Model Tranis for Their Drive Train Design (모형기차의 구동부 설계를 위한 동역학적 성능해석)

  • Kim, Suc-Tae;Yoon, Soon-Hyung;Tak, Tae-Oh
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.99-106
    • /
    • 2001
  • Model trains should have very similar motion characteristics to real trains in order to provide realistic feeling to their operators. Main purpose of dynamic analysis of model trains is to predict velocities in straight and circular tracks and estimate stopping distance after power shut off. Equations of motion for a model train are derived that relates velocity, traction, rolling resistance, and pulling force. Also, energy equations for calculating stopping distance after power shut off are derived. Experiments with model trains are preformed to measure velocity, rolling resistance, slip, and stopping distance. The results are compared with the prediction based on the equations of motion, and they showed good agreement. It can be concluded that the prediction is more accurate when the slip between wheel and rail is accounted for. The analysis procedures can be applied to determining various design factors in model trains.

  • PDF

High Performance Control of Switched Reluctance Motor Drive System for Automobiles by C-dump Converter (C-dump Converter에 의한 차량용 스위치드 릴럭턴스 전동기 구동 시스템의 고성능제어)

  • Kim D.K.;Yoon Y.H.;Lee T.W.;Won C.Y.;Kim Y.R.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.860-865
    • /
    • 2003
  • Recently, SRMs are used in automobiles for power assistant steering, accessory motion control and traction drives. Especially in the motion control and traction drives, safety and efficiency are of paramount important. The paper describes the essential elements, faced in designing and constructing drive circuits for a switched reluctance motor for automobiles. These converters will be referred to as energy efficient C-dump converter and modified C-dump converter Energy efficient C-dump converter topology eliminate all the disadvantages of the C-dump converter without sacrificing its attractive features, and also provide some additional advantages that have lower number of power devices, full regenerative capability, free-wheeling in chopping or PWM mode, simple control strategy, and faster demagnetization during commutation. The experiments are peformed to verify the capability of proposed control method on 6/4 salient type SRM.

  • PDF

Prediction of Maneuverability and Efficiency for a Mobile Robot on Rough Terrain through the development of a Testbed for Analysis of Robot-terrain interaction (지형-로봇간의 상호작용 분석 장치의 개발을 통한 야지 주행 로봇의 기동성 및 효율성 예측)

  • Kim, Jayoung;Lee, Jihong
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.2
    • /
    • pp.116-128
    • /
    • 2013
  • This paper focuses on development of a testbed for analysis of robot-terrain interaction on rough terrain and also, through one wheel driving experiments using this testbed, prediction of maximum velocity and acceleration of UGV. Firstly, from the review regarding previous researches for terrain modeling, the main variables for measurement are determined. A testbed is developed to measure main variables related to robot-terrain interaction. Experiments are performed on three kinds of rough terrains (grass, gravel, and sand) and traction-slip curves are obtained using the data of the drawbar pull and slip ratio. Traction-slip curves are used to predict driving performance of UGV on rough terrain. Maximum velocity and acceleration of UGVs are predicted by the simple kinematics and dynamics model of two kinds of 4-wheel mobile robots. And also, driving efficiency of UGVs is predicted to reduce energy consumption while traversing rough terrains.