• 제목/요약/키워드: Traction control system

검색결과 258건 처리시간 0.023초

PWM 정류기를 적용한 직류급전시스템의 조류계산에 대한 연구 (A Study on Power Flow Analysis of DC Traction Power Supply System with PWM Rectifier)

  • 김주락
    • 전기학회논문지
    • /
    • 제65권11호
    • /
    • pp.1919-1924
    • /
    • 2016
  • In general, Diode rectifier has been applied to DC traction power supply system. Diode has some characteristics which is voltage drop in inverse proportion of load because of non-controlled switch, and cannot flow a current in reverse bias. So, voltage drop occurs frequently, and regenerated power cannot use in substation. The PWM rectifier is able to control output voltage constantly to reduce voltage drop and to use regeneration power without additional inverter. This paper proposes analysis algorithm for DC traction power supply system with PWM rectifier.

직류 지하철 급전시스템용 회생인버터 시스템 (Regeneration inverter system for DC traction system)

  • 조기현;장수진;김종윤;원충연;김용기
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2007년도 춘계학술대회 논문집
    • /
    • pp.28-32
    • /
    • 2007
  • In this paper, a unified regenerative inverter and control algorithm are proposed in order to perform regenerative action and active power filter action. While the regenerative mode of traction, it works as regenerative inverter to reduce a excessive power of DC bus line and the powering mode of the traction, it works as active power filter to compensate ac current distortion, power factor, and voltage unbalance. In the paper, a regeneration inverter used PWM DC/AC inverter algorithm. And an active power filter used p-q theory. We are carrying out a mode analysis of DC traction system similar to actual system with MG-set and experimenting with prototype model. Through the simulation and experiment, we were proving the regeneration inverter operation which suggested in this paper.

  • PDF

퍼지논리를 이용한 차량 구동력 제어 시스템 (Vehicle Traction Control System using Fuzzy Logic Theory)

  • 서영덕;여문수;이승종
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.138-145
    • /
    • 1998
  • Recently, TCS(Traction Control System) is attracting attention, because it maintains traction ability and steerability of vehicles on low-$\mu$ surface roads by controlling the slip rate between tire and road surface. The development of TCS control law is difficult due to the highly nonlinearity and uncertainty involved in TCS. A fuzzy logic approach is appealing for TCS. In this paper, fuzzy logic controller for TCS is introduced and evaluated by the computer simulation with 8 DOF vehicle model. The result indicate that the fuzzy logic TCS improves vehicle's stability and steerability.

  • PDF

Speed Control System of Induction Motor with Fuzzy-Sliding Mode Controller for Traction Applications

  • Kim, Duk-Heon;Ryoo, Hong-Je;Rim, Geun-Hie;Kim, Yong-Ju;Won, Chung-Yuen
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제3B권1호
    • /
    • pp.52-58
    • /
    • 2003
  • The application of a sliding mode control for improving the dynamic response of an induction motor based speed control system is presented in this paper and provides attractive features, such as fast response, good transient performance, and insensitivity to variations in plant parameters and external disturbance. However, chattering is a difficult problem for which the sliding mode control is a popular solution. This paper presents a new fuzzy-sliding mode controller for a sensorless vector-controlled induction motor servo system to practically eliminate the chattering problem for traction applications. A DSP based implementation of the speed control system is employed. Experimental results are presented using a propulsion system simulator. The performance of the drive is shown to be practically free from chattering.

TCS를 위한 HIL 시뮬레이터 개발에 관한 연구 (Development of Hardware-in-the-loop Simulator for TCS)

  • 서명원;이한주;박윤기
    • 한국자동차공학회논문집
    • /
    • 제7권5호
    • /
    • pp.194-205
    • /
    • 1999
  • The prevalence of microprocessor-based controllers in automotive systems has greatly increased the need for tools which can be used to validate and test control systems over their full range of operation. The objective of this paper is to develop a real time simulator of traction control system by the methodology of using hardware-in-loop simulation based on a personal computer. By use of this simulator, the analysis of commercial electronic control units and components for TCS were performed successfully. The simulator of this research can be applied to development of more advanced control systems(suck as vehicle dynamics control system) and other automotive system.

  • PDF

4WD 및 4WS이 가능한 로더 개발 (II) (4륜 조향장치 및 로더 구성) (Development of Loader Equipped with 4Wd and 4WS (II) (4WS System and Construction of Loader))

  • 조현덕
    • 한국생산제조학회지
    • /
    • 제8권1호
    • /
    • pp.150-157
    • /
    • 1999
  • In this study, the loader was completed that has 4-wheel gear driven drivetrain of study (Ⅰ), the 4-wheel steering with power wheel type, all-wheel traction system, and joy-stick type lever for hydraulic control valve. From driving test of the developed 4WD and 4WS type loader, we obtained that the minimum circling radius and the necessary width in circling motion reduced about 40% and 33% compared with 2WS type loader. Also, all-wheel traction system could keep the tires glued to the ground with greater stability, the power steering allowed a smoother operation, and the joy-stick type lever offered easily to control. Thus, the developed loader having these functions was very fit in a small cattle shed or rugged ground.

  • PDF

엘리베이터 권상기 브레이크 시스템 소음 및 진동 감소를 위한 솔레노이드 구동 제어기법 개발 (Development of a Solenoid Control Technique for the Suppression of Brake System Noise and Vibrations of the Elevator Traction Machine)

  • 양동호;김기영;허석;곽문규;이재하
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.65-71
    • /
    • 2012
  • This paper is concerned with the suppression of brake system noise and vibrations of the elevator traction machine by means of a solenoid control technique. The solenoid is used to hold the brake shoe, which is then released by turning the solenoid off. Since the brake shoe hits the brake disk, vibrations and noise occur. We develop the solenoid control technique based on the dynamic behavior of the solenoid. The theoretical model for the solenoid is modeled by using linear magnetic principles. The solenoid model was then combined with the vibration model to simulate the brake system vibrations. The simulation results show that the additional pulse input to the solenoid can decrease the vibrations. The timing of the applied pulse is determined by observing the current. The experimental results show that both the vibrations and noise can be substantially decreased, which validates the approach developed in this paper.

  • PDF

ABS를 위한 HIL시뮬레이터 개발 (Development of Hardware-In-The-Loop Simulator for ABS)

  • 서명원;김석민;정재현;석창성;김영진;이선일;이재천
    • 한국자동차공학회논문집
    • /
    • 제6권2호
    • /
    • pp.155-167
    • /
    • 1998
  • The prevalence of microprocessor-based controllers in automotive systems has greatly increased the meed for tools which can be used to validate and test control systems over their full range of operation. The objective of this paper is to develop a real time simulator of an anti-lock braking system and the methodology of using hardware-in-the-loop simulation based on a personal computer. By use of this simulator, the analyses of a commercial electronic control unit as well as the validation of the developed control logics for ABS were performed successfully. The simulator of this research can be traction applied to development of more advanced control system, such as traction control systems, vehicle dynamic control system and so forth.

  • PDF

WHEEL SLIP CONTROL WITH MOVING SLIDING SURFACE FOR TRACTION CONTROL SYSTEM

  • Chun, K.;Sunwoo, M.
    • International Journal of Automotive Technology
    • /
    • 제5권2호
    • /
    • pp.123-133
    • /
    • 2004
  • This paper describes a robust and fast wheel slip tracking control using a moving sliding surface technique. A traction control system (TCS) is the active safety system used to prevent the wheel slipping and thus improve acceleration performance, stability and steerability on slippery roads through the engine torque and/or brake torque control. This paper presents a wheel slip control for TCS through the engine torque control. The proposed controller can track a reference input wheel slip in a predetermined time. The design strategy investigated is based on a moving sliding surface that only contains the error between the reference input wheel slip and the actual wheel slip. The used moving sliding mode was originally designed to ensure that the states remain on a sliding surface, thereby achieving robustness and eliminating chattering. The improved robustness in driving is important due to changes, such as from dry road to wet road or vice versa which always happen in working conditions. Simulations are performed to demonstrate the effectiveness of the proposed moving sliding mode controller.

철도차량 추진제어장치의 스트레스 분석 및 열화 메커니즘 (Stress Analysis and Degradation Mechanism of the Drive Control system for a Railway carriage)

  • 김기준;왕종배;최영찬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 제2회 학술대회 논문집 일렉트렛트 및 응용기술전문연구회
    • /
    • pp.21-24
    • /
    • 2000
  • Traction motors driven by several type inverters have been subjected to increasing demands for higher operating temperature, more demands for duty cycles, higher starting current, frequent voltage transients and finally severe environmental exposure. For applications to inverter duty, traction motors needs a special insulation system, which has characteristics of increased bond strength, lower operating temperature and higher turn-to-tum insulation. Also it needs major contributors to insulation life and reliability of motors, which more considered by temperature, voltage, frequency, rise time, pulse configuration, wire thickness and insulation materials. In this paper, to evaluate of reliability and expected life, it is analyzed the several stresses and their degradation mechanism on insulation system of AC traction motor.

  • PDF