• 제목/요약/키워드: Tracking Control

검색결과 3,955건 처리시간 0.036초

초정밀 선형 모터 시스템의 적응형 힘리플 보상과 정밀 트랙킹 제어 (Adaptive Force Ripple Compensation and Precision Tracking Control of High Precision Linear Motor System)

  • 최영만;권대갑;이문구
    • 한국정밀공학회지
    • /
    • 제22권12호
    • /
    • pp.51-60
    • /
    • 2005
  • This paper describes a robust control scheme for high-speed and long stroke scanning motion of high precision linear motor system consisting of linear motor, air bearing guide and position measurement system using heterodyne interferometer. Nowadays, semiconductor process and inspection of wafer or LCD need high speed and long travel length for their high throughput and extremely small velocity fluctuations or tracking errors. In order to satisfy these conditions, linear motor system are widely used because they have large thrust force and do not need motion conversion mechanisms such as ball screw, rack & pinion or capstan with which the system are burdened. However linear motors have a problem called force ripple. Force ripple deteriorates the tracking performances and makes periodic position errors. So, force ripple must be compensated. To maximize the tracking performance of linear motor system, we propose the control scheme which is composed of a robust control method, Time Delay Controller (TDC) and a feedforward control method, Zero Phase Error Tracking Control (ZPETC) for accurate tracking a given trajectory and an adaptive force ripple compensation (AFC) algorithm fur estimating and compensating force ripple. The adaptive ripple compensation is continuously refined on the basis of tracking error. Computer simulation results based on modeled parameters verify the effectiveness of the proposed control scheme for high-speed, long stroke and high precision scanning motion and show that the proposed control scheme can achieve a sup error tracking performance in comparison to conventional TDC control.

Research of the Unmanned Vehicle Control and Modeling for Lane Tracking and Obstacle Avoidance

  • Kim, Sang-Gyum;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.932-937
    • /
    • 2003
  • In this paper, we will explain about the unmanned vehicle control and modeling for combined obstacle avoidance and lane tracking. First, obstacle avoidance is considered as one of the important technologies in the unmanned vehicle. It is consisted by two parts: the first part includes the longitudinal control system for the acceleration and deceleration and the second part is the lateral control system for the steering control. Each system uses to the obstacle avoidance during the vehicle moving. Therefore, we propose the method of vehicle control, modeling and obstacle avoidance. Second, we describe a method of lane tracking by means of vision system. It is important in the unmanned vehicle and mobile robot system. In this paper, we deal with lane tracking and image processing method and it is including lane detection method, image processing algorithm and filtering method.

  • PDF

GMA 용접에서 강제적인 위빙이 없는 아크센서 시스템에 관한 연구 (II) -용접선 추적의 토치방향 높이제어- (A Study on the Weavingless Arc Sensor System in GMA Welding (II) -Torch Height Control in Weld Seam Tracking)

  • 안재현;김재웅
    • Journal of Welding and Joining
    • /
    • 제16권3호
    • /
    • pp.55-63
    • /
    • 1998
  • Among the position sensing methods available, the arc sensor which utilizes the electrical signal obtained from the welding arc itself is one of the most prevalently used methods, because it has an advantage that no particular sensing device is necessary and real-time sensing of a groove position is possible directly under the arc. The authors have already developed a seam tracking system that contains a new arc sensor algorithm, which uses the relative welding current variation according to the tip-to-workpiece distance in GMA welding. In this study a torch height control algorithm for automatic weld seam tracking was proposed for completing the previous system, which uses an on-off control technique. To implement the torch height control algorithm during weld seam tracking the system parameters which include 2nd averaging range, weighting factor for 2nd moving averaging, and Z-directional basic compensation distance were determined by experimental analysis. Finally the two different height control methods, one is simple on-off control and the other on-off control using a reference current value , were compared in their tracking abilities.

  • PDF

PTC용 태양 추적 장치의 개발 (A Development of Sun Tracking Control System for Parabolic Trough Concentrator)

  • 박영칠;곽희열;강용혁
    • 태양에너지
    • /
    • 제18권3호
    • /
    • pp.25-30
    • /
    • 1998
  • PTC용 태양추적장치는 최대 집열을 위하여 PTC를 항상 태양광이 입사되는 방향으로 일치시키기 위한 자동제어시스템이다. 본 연구는 마이크로프로세서를 사용하는 PTC용 1축 태양추적장치의 개발에 관한 것이다. 개발된 태양추적장치는 태양 위치를 판별하는 태양 센서와 DC 모터 위치제어기로 구성되어 있으며, 80c196KC를 사용하는 제어장치는 아날로그 입력 장치, 24V DC 서보모터제어기, 디지털 I/O로 구성되어 있다. 태양센서는 photodiode를 사용하여 제작되었으며, 태양센서의 법선 방향으로부터 ${\pm}50^{\circ}$ 이내에 위치하는 태양을 감지할 수 있도록 설계되었다. 본 연구에서 개발된 태양추적장치는 현재 한국에너지기술연구소에 설치되어 있는 PTC에서 사용되고 있으며, 태양추적 정확도에 관한 연구가 현재 진행되고 있다.

  • PDF

능동 현가 장치의 외란 적응 슬라이딩 모드 제어 (Active Suspension using Disturbance Accommodating Sliding Mode Control)

  • 김종래;김진호
    • 제어로봇시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.275-280
    • /
    • 1999
  • This paper presents a disturbance accommodating sliding mode control for a quarter-car active suspension using an electro-hydraulic actuator. The electro-hydraulic actuator model is nonlinear and uncertain. The hardware constrains on the actuator prevent high gain in a sliding mode control, which deteriorates the force tracking performance. DAC(Disturbance Accommodating Control) is combined with the sliding mode control to improve the tracking performance. DAC observer estimates the pressure due to the actuator uncertainty. The additional control is designed to compensate the estimated pressure. Simulation results show the improved tracking performance with the Proposed control methods.

  • PDF

로보트 팔에 대한 로버스트하고 추적 오차를 최소화하는 제어기 설계 (A robust and minimum tracking error controller design for robot arms)

  • 김세창;신휘범;윤명중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.36-40
    • /
    • 1986
  • This paper describes a design of the dynamic robot arm controller with two points of view, robustness and minimum tracking error. A new approach to the robust control of robot arm is developed and an explicit solution for minimum tracking error control is obtained from the regulator problem in the error space given by modifying the tracking problem. This control law is applied to the SCARA robot and the computer simulation is presented.

  • PDF

연속 가변 구조 제어를 이용한 직류 전동기의 추적 제어 (Tracking Control of a DC Servomotor Using a Continuous VSS Control)

  • 이정훈;고종선;이종준;이주장;윤명중
    • 대한전기학회논문지
    • /
    • 제41권6호
    • /
    • pp.607-614
    • /
    • 1992
  • A continuous variable structure system control for a DC servomotor tracking controller is proposed to alleviate the chattering problems. The stability property of the proposed algorithm is analyzed in detail. The prescribed tracking error is guaranteed under load variations based on the stability analysis. Through the comparative simulations between the proposed algorithm and the conventional VSS, the effectiveness of the proposed algorithm is proved.

  • PDF

Policy Iteration Algorithm Based Fault Tolerant Tracking Control: An Implementation on Reconfigurable Manipulators

  • Li, Yuanchun;Xia, Hongbing;Zhao, Bo
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1740-1751
    • /
    • 2018
  • This paper proposes a novel fault tolerant tracking control (FTTC) scheme for a class of nonlinear systems with actuator failures based on the policy iteration (PI) algorithm and the adaptive fault observer. The estimated actuator failure from an adaptive fault observer is utilized to construct an improved performance index function that reflects the failure, regulation and control simultaneously. With the help of the proper performance index function, the FTTC problem can be transformed into an optimal control problem. The fault tolerant tracking controller is composed of the desired controller and the approximated optimal feedback one. The desired controller is developed to maintain the desired tracking performance at the steady-state, and the approximated optimal feedback controller is designed to stabilize the tracking error dynamics in an optimal manner. By establishing a critic neural network, the PI algorithm is utilized to solve the Hamilton-Jacobi-Bellman equation, and then the approximated optimal feedback controller can be derived. Based on Lyapunov technique, the uniform ultimate boundedness of the closed-loop system is proven. The proposed FTTC scheme is applied to reconfigurable manipulators with two degree of freedoms in order to test the effectiveness via numerical simulation.

확장 칼만 필터를 이용한 대상 상태 추정 기반 자율주행 대차의 모델 예측 추종 제어 알고리즘 (A Model Predictive Tracking Control Algorithm of Autonomous Truck Based on Object State Estimation Using Extended Kalman Filter)

  • 송태준;이혜원;오광석
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권2호
    • /
    • pp.22-29
    • /
    • 2019
  • This study presented a model predictive tracking control algorithm of autonomous truck based on object state estimation using extended Kalman filter. To design the model, the 1-layer laser scanner was used to estimate position and velocity of the object using extended Kalman filter. Based on these estimations, the desired linear path for object tracking was computed. The lateral and yaw angle errors were computed using the computed linear path and relative positions of the truck. The computed errors were used in the model predictive control algorithm to compute the optimal steering angle for object tracking. The performance evaluation was conducted on Matlab/Simulink environments using planar truck model and actual point data obtained from laser scanner. The evaluation results showed that the tracking control algorithm developed in this study can track the object reasonably based on the model predictive control algorithm based on the estimated states.

적응적인 물체분리를 이용한 효과적인 공분산 추적기 (Effective Covariance Tracker based on Adaptive Foreground Segmentation in Tracking Window)

  • 이진욱;조재수
    • 제어로봇시스템학회논문지
    • /
    • 제16권8호
    • /
    • pp.766-770
    • /
    • 2010
  • In this paper, we present an effective covariance tracking algorithm based on adaptive size changing of tracking window. Recent researches have advocated the use of a covariance matrix of object image features for tracking objects instead of the conventional histogram object models used in popular algorithms. But, according to the general covariance tracking algorithm, it can not deal with the scale changes of the moving objects. The scale of the moving object often changes in various tracking environment and the tracking window(or object kernel) has to be adapted accordingly. In addition, the covariance matrix of moving objects should be adaptively updated considering of the tracking window size. We provide a solution to this problem by segmenting the moving object from the background pixels of the tracking window. Therefore, we can improve the tracking performance of the covariance tracking method. Our several simulations prove the effectiveness of the proposed method.