• 제목/요약/키워드: Tracking Actuator

검색결과 267건 처리시간 0.03초

수상선박의 위치 및 자세제어시스템 설계에 관한 연구 : 강인제어기법에 의한 관측기 설계 (Dynamic Positioning Control System Design for Surface Vessel: Observer Design Based on H Control Approach)

  • 김영복
    • 대한기계학회논문집A
    • /
    • 제36권10호
    • /
    • pp.1171-1179
    • /
    • 2012
  • 본 논문에서는 선박운동제어를 위한 제어시스템 설계문제에 대해 고찰한다. 특히 강인한 추종성능을 가진 2자유도 서보계 설계법을 이용하여 선박의 위치 및 자세제어를 위한 제어기를 설계하고, 실험 등의 실제적인 제어시스템 구축시 센서로부터 모든 정보를 획득할 수 없으므로 이에 필요한 상태를 추정하기 위한 관측기 설계 문제에 대해 고려하고 있다. 그래서 본 논문에서는 실제 상태정보와 추정된 상태정보와의 오차를 최소화하도록 $H_{\infty}$ 오차 바운드를 설정하는 기법으로 관측기의 이득을 구한다. 특히 $H_{\infty}$ 오차 바운드를 만족하는 관측기가 존재하기 위한 조건을 LMI형식으로 변환하여 표현함으로써 관측기 이득 계산을 효율적으로 수행하여 최적의 이득을 구할 수 있음을 보이고 시뮬레이션을 통해 그 유용성을 확인한다.

효과적인 견관절 재활을 위한 로봇의 설계 (Design of a Robotic Device for Effective Shoulder Rehabilitation)

  • 이경섭;박정호;박형순
    • 대한기계학회논문집B
    • /
    • 제41권8호
    • /
    • pp.505-510
    • /
    • 2017
  • 본 논문에서는 다양한 견관절 장애 증상에 적용할 수 있는 보급형 상지 재활 로봇의 설계를 다룬다. 견관절의 회전에 수반되는 관절 중심의 위치변화를 추종하고, 사용자의 상지와 장치의 무게를 상쇄하는 3자유도 견관절 추종 및 중력보상 메커니즘을 구현하였다. 다양한 방향의 어깨 재활 동작을 구현할 수 있도록 구동축의 방향을 변환하는 메커니즘을 설계하여, 견관절에 대한 구동기의 상대적인 오리엔테이션을 변화시킴으로써 대표적인 5가지 견관절 동작을 수행할 수 있었다. 동시에 재활 운동 중의 견관절의 위치 변화를 추종하여 자연스러운 견관절 운동을 구현할 수 있었다. 최소의 구동기를 사용하는 보급형 로봇으로도 다양한 견관절 질환에 효과적으로 대응할 수 있음을 확인하였다.

폐쇄형 식물생산 시스템에서 태양광 채광시스템 연구 (Evaluating Solar Light Collectors for Use in Closed Plant Production Systems)

  • 이상규;이재수;이현동;백정현;노시영;홍영신;박종원
    • 한국환경과학회지
    • /
    • 제28권5호
    • /
    • pp.521-526
    • /
    • 2019
  • In this study, a solar light collector that collects and transmits solar light required for crop production in a closed plant production system was developed. The solar light collector consisted of a Fresnel lens for collecting solar light, and a tracking actuator for tracking solar light from sunrise to sunset to increase the light collection efficiency. The optical fiber that transmitted solar light was made of Glass Optical Fiber (GOF), and it had an excellent optical transmission rate. After collecting the solar light, the amount of light was measured at 5, 10, 15, 20, 25, and 30 cm distances from the GOF through the darkroom by using a light sensor logger connected to a quantum and pyranometer sensor. Compared with solar light, the light intensity of pyranometer sensor measured at 5 cm was 114% higher than solar light, and 61% at 10 cm. In addition, it was observed that it is possible to transmit the necessary amount of light for growing crops up to about 15 cm (as over 22%) through GOF. Therefore, adding diffusers to the solar light collector should be expected to replace artificial light in plant factories or plug seedlings nurseries for leafy vegetables. More studies on the solar light collection devices and the light transmission devices that have high light collection efficiency should be conducted.

외바퀴 로봇의 동적 속도 제어 (Dynamic Speed Control of a Unicycle Robot)

  • 한인우;황종명;한성익;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제19권1호
    • /
    • pp.1-9
    • /
    • 2013
  • This paper presents a new control algorithm for dynamic control of a unicycle robot. The unicycle robot motion consists of a pitch that is controlled by an in-wheel motor and a roll that is controlled by a reaction wheel pendulum. The unicycle robot doesn't have any actuator for a yaw axis control, which makes the derivation of the dynamics relatively simple. The Euler-Lagrange equation is applied to derive the dynamic equations of the unicycle robot to implement the dynamic speed control of the unicycle robot. To achieve the real time speed control of the unicycle robot, the sliding mode control and LQ regulator are utilized to guarantee the stability while maintaining the desired speed tracking performance. In the roll controller, the sigmoid-function based sliding mode controller has been adopted to minimize the chattering by the switching function. The LQR controller has been implemented for the pitch control to drive the unicycle robot to follow the desired velocity trajectory in real time using the state variables of pitch angle, angular velocity, angle and angular velocity of the wheel. The control performance of the two control systems form a single dynamic model has been demonstrated by the real experiments.

PDFF Controller Design by CDM for Position Control of Traveling-Wave Ultrasonic Motor

  • Nundrakwang, S.;Isarakorn, D.;Benjanarasuth, T.;Ngamwiwit, J.;Komine, N.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1847-1852
    • /
    • 2003
  • Ultrasonic motors have many excellent performances. A variety of ultrasonic motors has been developed and used as an actuator in motion control systems. However, this motor has nonlinear characteristics. Therefore, it is difficult to achieve the precise position control system incorporating with the ultrasonic motor. This paper describes a position control scheme for traveling-wave type ultrasonic motor using a pseudo-derivative control with feedforward gains (PDFF) controller designed by the coefficient diagram method (CDM). The PDFF control system satisfies both the tracking and regulation performances, which are the most important for the precise position control system. The CDM is shown to be an efficient and simple method to design the parameters of PDFF controller. The effectiveness of the proposed control system is demonstrated by experiments.

  • PDF

A Study of a Novel Wind Turbine Concept with Power Split Gearbox

  • Liu, Qian;Appunn, Rudiger;Hameyer, Kay
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권4호
    • /
    • pp.478-485
    • /
    • 2013
  • This paper focuses on the design and control of a new concept for wind turbines with a planetary gearbox to realize a power split. This concept, where the generated wind power is split into two parts, is to increase the utilization of the wind power and may be particularly suitable for large scale off-shore wind turbines. In order to reduce the cost of the power electronic devices, a synchronous generator, which is driven by the planetary gear, is directly connected to the power grid without electronic converter. A servo drive, which functions as the control actuator, is connected to the power grid by a power electronic converter. With small scale power electronic device, the current harmonics can also be reduced. The speed of the main shaft is controlled to track the optimal tip speed ratio. Meanwhile the speed of the synchronous generator is controlled to stay at the synchronous speed. The minimum rated power of the servo motor and the converter, is studied and discussed in this paper. Different variants of the wind turbine with a planetary gear are also compared. The controller for optimal tip speed ratio and synchronous speed tracking is given.

Development, implementation and verification of a user configurable platform for real-time hybrid simulation

  • Ashasi-Sorkhabi, Ali;Mercan, Oya
    • Smart Structures and Systems
    • /
    • 제14권6호
    • /
    • pp.1151-1172
    • /
    • 2014
  • This paper presents a user programmable computational/control platform developed to conduct real-time hybrid simulation (RTHS). The architecture of this platform is based on the integration of a real-time controller and a field programmable gate array (FPGA).This not only enables the user to apply user-defined control laws to control the experimental substructures, but also provides ample computational resources to run the integration algorithm and analytical substructure state determination in real-time. In this platform the need for SCRAMNet as the communication device between real-time and servo-control workstations has been eliminated which was a critical component in several former RTHS platforms. The accuracy of the servo-hydraulic actuator displacement control, where the control tasks get executed on the FPGA was verified using single-degree-of-freedom (SDOF) and 2 degrees-of-freedom (2DOF) experimental substructures. Finally, the functionality of the proposed system as a robust and reliable RTHS platform for performance evaluation of structural systems was validated by conducting real-time hybrid simulation of a three story nonlinear structure with SDOF and 2DOF experimental substructures. Also, tracking indicators were employed to assess the accuracy of the results.

관절 경직 환자의 물리 치료를 위한 공압 구동형 하이브리드 로봇 개발 (Development of the Hybrid Type Robot Using a Pneumatic Actuator For Physical Therapy Of Ankylosis)

  • 최현석;최철우;한창수;한정수
    • 대한의용생체공학회:의공학회지
    • /
    • 제24권2호
    • /
    • pp.127-132
    • /
    • 2003
  • 본 논문에서는 관절 경직 환자의 재활 치료를 위한 공압 실린더를 이용한 하이브리드형 로봇을 연구 개발하였다. 공압 실린더는 우수한 컴플라이언스를 가지고 있고 부피나 중량에 비해 높은 구동력을 가지고 있다 낮은 강성을 지닌 공압 구동기는 안정이 보장되어야 하는 물리 치료용 로봇의 구현에 적용하기 적당하다. 본 연구에서 제안한 로봇 시스템은 직렬형과 병렬형을 결합한 하이브리드 형으로 위치 결정부와 자세 결정부로 구분되며 하이브리드 구조를 통해 넓은 작업영역과 구동력을 얻을 수 있었다. 슬라이딩 모드 제어기를 이용하여 로봇 시스템의 공압 서보시스템의 추종성과 안정성을 얻을 수 있었으며 실험을 통하여서 개발된 시스템에 대한 검증을 하였다.

QFT 를 이용한 유압 로드 시뮬레이터에 관한 힘 제어계 설계 (Design of Force Control System for a Hydraulic Road Simulator using QFT)

  • 김진완;현동길;남양해;김영배
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1109-1114
    • /
    • 2007
  • This paper presents the road simulator control technology for reproducing the road input signal to implement the real road data. The simulator consists of the hydraulic pump, servo valve, hydraulic actuator and its control equipment. The QFT is utilized to control the simulator effectively. The control system illustrates a tracking performance of the closed-loop controller with low order transfer function G(s) and pre-filter F(s) for a parametric uncertain model. A force controller is designed to communicate the control signal between simulator and digital controller. The efficacy of the QFT force controller is verified through the numerical simulation, in which combined dynamics and actuation of the hydraulic servo system are tested. The simulation results show that the proposed control technique works well under uncertain hydraulic plant system. The conventional software (Labview) is used to make up for the real controller in the real-time basis, and the experimental works show that the proposed algorithm works well for a single road simulator.

  • PDF

Real-time large-scale hybrid testing for seismic performance evaluation of smart structures

  • Mercan, Oya;Ricles, James;Sause, Richard;Marullo, Thomas
    • Smart Structures and Systems
    • /
    • 제4권5호
    • /
    • pp.667-684
    • /
    • 2008
  • Numerous devices exist for reducing or eliminating seismic damage to structures. These include passive dampers, semi-active dampers, and active control devices. The performance of structural systems with these devices has often been evaluated using numerical simulations. Experiments on structural systems with these devices, particularly at large-scale, are lacking. This paper describes a real-time hybrid testing facility that has been developed at the Lehigh University NEES Equipment Site. The facility enables real-time large-scale experiments to be performed on structural systems with rate-dependent devices, thereby permitting a more complete evaluation of the seismic performance of the devices and their effectiveness in seismic hazard reduction. The hardware and integrated control architecture for hybrid testing developed at the facility are presented. An application involving the use of passive elastomeric dampers in a three story moment resisting frame subjected to earthquake ground motions is presented. The experiment focused on a test structure consisting of the damper and diagonal bracing, which was coupled to a nonlinear analytical model of the remaining part of the structure (i.e., the moment resisting frame). A tracking indictor is used to track the actuator ability to achieve the command displacement during a test, enabling the quality of the test results to be assessed. An extension of the testbed to the real-time hybrid testing of smart structures with semi-active dampers is described.