• Title/Summary/Keyword: Track Deviation

Search Result 66, Processing Time 0.025 seconds

Quasi-Fixed-Frequency Hysteresis Current Tracking Control Strategy for Modular Multilevel Converters

  • Mei, Jun;Ji, Yu;Du, Xiaozhou;Ma, Tian;Huang, Can;Hu, Qinran
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1147-1156
    • /
    • 2014
  • This study proposes a quasi-fixed-frequency hysteresis current tracking control strategy for modular multilevel converters (MMCs) on the basis of voltage partition principle. First, by monitoring the grid voltage and the deviation between the output and reference currents, the output voltage is determined, thus prompting the output current to quickly and efficiently track the given current. Second, the voltages of the upper/lower capacitor of the arm and the voltages between the upper and lower arms are balanced by combining these arms with virtual loop mapping and arm voltage balance control, respectively. In particular, the proposed method is designed for any level and number of sub-modules. The validity of the proposed method is verified by simulations and experimental results of a five-level MMC prototype.

EVALUATION OF MARINE SURFACE WINDS OBSERVED BY ACTIVE AND PASSIVE MICROWAVE SENSORS ON ADEOS-II

  • Ebuchi, Naoto
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.146-149
    • /
    • 2006
  • Marine surface winds observed by two microwave sensors, SeaWinds and Advanced Microwave Scanning Radiometer (AMSR), on the Advanced Earth Observing Satellite-II (ADEOS-II) are evaluated by comparison with off-shore moored buoy observations. The wind speed and direction observed by SeaWinds are in good agreement with buoy data with root-mean-squared (rms) differences of approximately 1 m $s^{-1}$ and $20^{\circ}$, respectively. No systematic biases depending on wind speed or cross-track wind vector cell location are discernible. The effects of oceanographic and atmospheric environments on the scatterometry are negligible. The wind speed observed by AMSR also exhibited reasonable agreement with the buoy data in general with rms difference of 1.2 m $s^{-1}$. Systematic bias which was observed in earlier versions of the AMSR winds has been removed by algorithm refinements. Intercomparison of wind speeds globally observed by SeaWinds and AMSR on the same orbits also shows good agreements. Global wind speed histograms of the SeaWinds data and European Centre for Medium-range Weather Forecasts (ECMWF) analyses agree precisely with each other, while that of the AMSR wind shows slight deviation from them.

  • PDF

Estimation of Person Height and 3D Location using Stereo Tracking System (스테레오 추적 시스템을 이용한 보행자 높이 및 3차원 위치 추정 기법)

  • Ko, Jung Hwan;Ahn, Sung Soo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.2
    • /
    • pp.95-104
    • /
    • 2012
  • In this paper, an estimation of person height and 3D location of a moving person by using the pan/tilt-embedded stereo tracking system is suggested and implemented. In the proposed system, face coordinates of a target person is detected from the sequential input stereo image pairs by using the YCbCr color model and phase-type correlation methods and then, using this data as well as the geometric information of the stereo tracking system, distance to the target from the stereo camera and 3-dimensional location information of a target person are extracted. Basing on these extracted data the pan/tilt system embedded in the stereo camera is controlled to adaptively track a moving person and as a result, moving trajectory of a target person can be obtained. From some experiments using 780 frames of the sequential stereo image pairs, it is analyzed that standard deviation of the position displacement of the target in the horizontal and vertical directions after tracking is kept to be very low value of 1.5, 0.42 for 780 frames on average, and error ratio between the measured and computed 3D coordinate values of the target is also kept to be very low value of 0.5% on average. These good experimental results suggest a possibility of implementation of a new stereo target tracking system having a high degree of accuracy and a very fast response time with this proposed algorithm.

Development of Motion Control Camera Design Based on Wires with Anti-sway Method

  • Kim, Tae-Rim;Jung, Sung-Young;Baek, Gyeong-Dong;Kim, Sung-Shin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • This paper is proposed about three axis motion control camera design method based on wires. Original motion control camera consists of track, boom, L-Head, Camera and so on and is enormous and expensive. But proposed motion control camera adjusts wire length using encoders and motors. And position control use position based straight line of straight-line move method for moving precise position. Proposed simple design is able to use various place and inexpensive than original motion control camera. But, camera was vibrated and rotated due to basic property of wire. So we proposed solutions that connected method of wire and using a tensional object for reducing rotation. For proposed algorithm verification, we realized three axis motion control camera based on wire and measured oscillation while moving same trace. We confirmed the results that standard deviation of oscillation was reduced 4.93 degree than before design method.

Comparison of Goal-point and In-length Analyses in the Proximity Measures of Simulated Maneuvers (선박조종시뮬레이션의 근접도 계측에서 연속 분석과 목표점 분석에 관한 비교 연구)

  • Jeong, Tae-Gweon;Lee, Dong-Sup
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.31-36
    • /
    • 2006
  • The evaluation of safety of simulated maneuvers is frequently analysed by so called goal line or point of interest. This paper is to suggest that regarding the results of simulation the goal analysis and in length analysis are investigated respectively and the availability of which is effective and is also to suggest closest distance to channel boundary at each ship's position, not centerline, as one of proximity measures.

  • PDF

Implementation of AUSV System for Sonar Image Acquisition (소나 영상 촬영을 위한 자율항법 시스템 구현)

  • Ryu, Jae-Hoon;Ryu, Conan KR
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.961-964
    • /
    • 2016
  • This paper describes the implementation of AUSV system for Sonar Image acquisition. The system be controlled by FF-PID algorithm for the thrusters using motion sensor and DGPS. As experimental results, the control performance is that the error distance from the destination positions are under 5m in total survey track of 1km, and the image deviation is under 12 pixel from the manned survey method, which the comparison with the total image quality is almost the same as the manned survey one. Thus the AUSV system is a new method of system can be utilized on the limited survey area as the surveyor should not be able to approach on sea surface.

  • PDF

The Effects of Age, Gender, and Situational Factors on Take-Over Performance in Automated Driving (연령, 성별 및 상황적 요인이 자율주행 제어권 전환 수행도에 미치는 영향)

  • Myoungouk, Park;Joonwoo, Son
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.70-76
    • /
    • 2022
  • This paper investigates the effects of age, gender, and situational factors on take-over performance in automated driving. The existing automated driving systems still consider a driver as a fallback-ready user who is receptive to take-over requests. Thus, we need to understand the impact of situations and human factors on take-over performance. 34 drivers drove on a simulated track, consisting of one baseline and four event scenarios. The data, including the brake reaction time and the standard deviation of lane position, and physiological data, including the heart rate and skin conductance, were collected. The analysis was performed using repeated-measures ANOVA. The results showed that there were significant age, gender, and situational differences in the takeover performance and mental workload. Findings from this study indicated that older drivers may face risks due to their degraded driving performance, and female drivers may have a negative experience on automated driving.

Utilization of deep learning-based metamodel for probabilistic seismic damage analysis of railway bridges considering the geometric variation

  • Xi Song;Chunhee Cho;Joonam Park
    • Earthquakes and Structures
    • /
    • v.25 no.6
    • /
    • pp.469-479
    • /
    • 2023
  • A probabilistic seismic damage analysis is an essential procedure to identify seismically vulnerable structures, prioritize the seismic retrofit, and ultimately minimize the overall seismic risk. To assess the seismic risk of multiple structures within a region, a large number of nonlinear time-history structural analyses must be conducted and studied. As a result, each assessment requires high computing resources. To overcome this limitation, we explore a deep learning-based metamodel to enable the prediction of the mean and the standard deviation of the seismic damage distribution of track-on steel-plate girder railway bridges in Korea considering the geometric variation. For machine learning training, nonlinear dynamic time-history analyses are performed to generate 800 high-fidelity datasets on the seismic response. Through intensive trial and error, the study is concentrated on developing an optimal machine learning architecture with the pre-identified variables of the physical configuration of the bridge. Additionally, the prediction performance of the proposed method is compared with a previous, well-defined, response surface model. Finally, the statistical testing results indicate that the overall performance of the deep-learning model is improved compared to the response surface model, as its errors are reduced by as much as 61%. In conclusion, the model proposed in this study can be effectively deployed for the seismic fragility and risk assessment of a region with a large number of structures.

The Cross-validation of Satellite OMI and OMPS Total Ozone with Pandora Measurement (지상 Pandora와 위성 OMI와 OMPS 오존관측 자료의 상호검증 방법에 대한 분석 연구)

  • Baek, Kanghyun;Kim, Jae-Hwan;Kim, Jhoon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.3
    • /
    • pp.461-474
    • /
    • 2020
  • Korea launched Geostationary Environmental Monitoring Satellite (GEMS), a UV/visible spectrometer that measure pollution gases on 18 February 2020. Because satellite retrieval is an ill-posed inverse solving process, the validation with ground-based measurements or other satellite measurements is essential to obtain reliable products. For this purpose, satellite-based OMI and OMPS total column ozone (TCO), and ground-based Pandora TCO in Busan and Seoul were selected for future GEMS validation. First of all, the goal of this study is to validate the ground ozone data using characteristics that satellite data provide coherent ozone measurements on a global basis, although satellite data have a larger error than the ground-based measurements. In the cross validation between Pandora and OMI TCO, we have found abnormal deviation in ozone time series from Pandora #29 observed in Seoul. This shows that it is possible to perform inverse validation of ground data using satellite data. Then OMPS TCO was compared with verified Pandora TCO. Both data shows a correlation coefficient of 0.97, an RMSE of less than 2 DU and the OMPS-Pandora relative mean difference of >4%. The result also shows the OMPS-Pandora relative mean difference with SZA, TCO, cross-track position and season have insignificant dependence on those variables.In addition, we showed that appropriate thresholds depending on the spatial resolution of each satellite sensor are required to eliminate the impact of the cloud on Pandora TCO.

The linear model analysis and Fuzzy controller design of the ship using the Nomoto model (Nomoto모델을 이용한 선박의 선형 모델 분석 및 퍼지제어기 설계)

  • Lim, Dae-Yeong;Kim, Young-Chul;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.821-828
    • /
    • 2011
  • This paper developed the algorithm for improving the performance the auto pilot in the autonomous vehicle system consisting of the Track keeping control, the Automatic steering, and the Automatic mooring control. The automatic steering is the control device that could save the voyage distance and cost of fuel by reducing the unnecessary burden of driving due to the continuous artificial navigation, and avoiding the route deviation. During the step of the ship autonomic navigation control, since the wind power or the tidal force could make the ship deviate from the fixed course, the automatic steering calculates the difference between actual sailing line and the set course to keep the ship sailing in the vicinity of intended course. first, we could get the transfer function for the modeling of ship according to the Nomoto model. Considering the maneuverability, we propose it as linear model with only 4 degree of freedoms to present the heading angle response to the input of rudder angle. In this paper, the model of ship is derived from the simplified Nomoto model. Since the proposed model considers the maximum angle and rudder rate of the ship auto pilot and also designs the Fuzzy controller based on existing PID controller, the performance of the steering machine is well improved.