• Title/Summary/Keyword: Tracer gas technique

Search Result 28, Processing Time 0.021 seconds

Effect of rotational motion of piston ring on the oil consumption -2'nd report: Relationship between phase angle of ring end gap and oil consumption (피스톤링의 회전운동이 오일소모에 미치는 영향-제2보: 링갭의 위상각과 오일소모와 의 관계-)

  • 민병순;김중수;오대윤;최재권;진준하
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.81-88
    • /
    • 1999
  • In order to understand the relationship between the phase angle of piston ring and oil consumption was measured by analyzing $CO_2$concentration in exhaust gas. The use of hydrogen fuel not gasoline makes this possible because all of the carbon component in exhaust gas can be assumed to be produced from oil. As a result of experiment, it is known that the oil consumption varies periodically and a specific location of ring end gap was found at each peak of oil consumption. Therefore, it was found that the oil consumption was not constant even at the same operating conditions and this is because the relative locations of top and 2'nd ring end gap change arbitrarily.

  • PDF

Characteristics of Indoor Air Quality of Acidic Air Pollutants in a Private Home During Home During the Summer Season (여름철 가정집에서의 산성오염물질에 대한 실내 공기질 특성)

  • 이학성;강병욱;강충민;여현구
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.2
    • /
    • pp.193-201
    • /
    • 2001
  • Acidic air pollutants were collected to characterize indoor air quality in a residential area in the summer. All indoor and outdoor samples were measured simultaneously using an annular denuder system(ADS) in Seoul. The data set was collected from July 26 to September 11, 1997. The mean indoor/outdoor ratios measured from this study were : 0.34 for $HNO_3$; 0.91 for $HNO_2$; 0.22 for $SO_2$; 1.34 for $NH_3$; 0.78 for $PM_{2.5}(d_p$ <2.5 $mutextrm{m}$); 0.90 for $SO_{4}^{2-}$; 0.68 for $NO_{3}^{-}$ and 0.79 for $NH_{4}^{+}$. Indoor concentrations of $HNO_3$, $SO_2$ and $PM_{2.5}$ were highly correlated with the outdoor concentrations. The relationship between indoor and outdoor air is dependent, to a large extent, on the rate of air exchange between these two environments. A tracer-gas decay technique with sulfur hexafluoride ($SF_{6}$) as a tracer gas was used to estimate the air exchange of a private home in the summer. The average air exchange rate was estimated to be 23.7 hr(sup)-1. The deposition velocities for $SO_{4}^{2-}$, $NO_{3}^{-}$ and $NH_{4}^{+}$ calculated were 0.17, 0.69 abd 0.39 cm/sec, respectively.

  • PDF

An Experimental Study on the Ventilation Performance to Enhance Removal Efficiency of Indoor Hamful Gases (실내 유해가스 제거효율 향상을 위한 환기성능에 관한 실험적 연구)

  • Ku, Jae-Hyun
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.117-124
    • /
    • 2009
  • The objective of this research is to analyze the ventilation performance of mechanical ventilation systems to enhance removal efficiency of indoor hamful gases. The ventilation performance is evaluated using a step-down method based on ASTM Standard E741-83. The ventilation performance is evaluated as a function of the ventilation rate and supply/extract locations using a tracer gas ($CO_2$) technique. As a result, the $CO_2$ concentration as a function of time is decayed exponentially and the ventilation performance is found to increase with increased the ventilation rate. The ventilation performance of the second type ventilation system is better than that of the first type or the third type. The ventilation performance without human occupancy increases up to 55% and the ventilation performance with one person increases up to 25% at the supply air of 570Lpm comparing with a natural reduction after one hour in the test chamber. The ventilation performance is better than 15% comparing with natural decay at the supply of 570Lpm in an office room.

Comparison of In vivo and In vitro Techniques for Methane Production from Ruminant Diets

  • Bhatta, Raghavendra;Tajima, K.;Takusari, N.;Higuchi, K.;Enishi, O.;Kurihara, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.7
    • /
    • pp.1049-1056
    • /
    • 2007
  • This study was conducted to compare the methane ($CH_4$) production estimated by in vivo (sulfur hexafluoride tracer technique ($SF_6$)) with that of two in vitro rumen simulation (RUSITEC) and gas production (IVGPT)) techniques. Four adult dry Holstein cows, aged $7.4{\pm}3.0$ years and weighing $697{\pm}70$ kg, were used for measuring methane production from five diets by the $SF_6$ technique. The experimental diets were alfalfa hay ($D_1$), corn silage + soybean meal (SBM) (910: 90, $D_2$), Italian rye grass hay +SBM (920: 80, $D_3$), rice straw +SBM (910: 90, $D_4$) and Sudan grass hay +SBM (920: 80, $D_5$). Each diet was individually fed to all 4 cows and 5 feeding studies of 17 d each were conducted to measure the methane production. In the RUSITEC, methane production was measured from triplicate vessels for each diet .In vitro gas production was measured for each of the diets in triplicate syringes. The gas produced after 24 and 48 h was recorded and gas samples were collected in vacuum vials and the methane production was calculated after correction for standard temperature and pressure (STP). Compared to the $SF_6$ technique, estimates of methane production using the RUSITEC were lower for all diets. Methane production estimated from 24 h in vitro gas production was higher (p<0.001) on $D_1$ as compared to that measured by $SF_6$, whereas on $D_2$ to $D_5$ it was lower. Compared to $SF_6$, methane production estimated from 48 h in vitro gas production was higher on all diets. However, methane estimated from the mean of the two measurement intervals (24+48 h/2) in IVGPT was very close to that of $SF_6$ (correlation 0.98), except on $D_1$. The results of our study confirmed that IVGPT is reflective of in vivo conditions, so that it could be used to generate a database on methane production potential of various ruminant diets and to examine strategies to modify methane emissions by ruminants.

A Study on Ventilation Effectiveness in the Non-isothermal Supply using Mixing and Displacement Ventilation Systems (비등온 급기조건에서 환기방식에 따른 환기효율 특성에 관한 연구)

  • 이재근;강태욱;윤석구;구재현;한정균;조민철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.739-745
    • /
    • 2001
  • The objective of this research is to analyze the ventilation effectiveness in the non-isothermal air supply using mixing and displacement ventilation systems for indoor air quality control and management. In this study, a ventilation effectiveness is evaluated in a simplified model chamber using a tracer gas technique of $CO^2$ gas injected into a supply duct as a function of ventilation rates, supply/extract sites and cooling/heating air supply. The ventilation effectiveness decreased with increasing ventilation rate on the cooling and heating conditions. And the ventilation effectiveness of case 3 (down supply and upper extract) was better thant that of case 1(upper supply and upper extract) and case 2(upper supply and down extract) with the cooling supply conditions. but for the heating supply air conditions, the ventilation effectiveness of case 2 was better than that of case 3 and case 1.

  • PDF

Development and Validation of a Measurement Technique for Interfacial Velocity in Liquid-gas Separated Flow Using IR-PTV (적외선 입자추적유속계를 이용한 액체-기체 분리유동 시 계면속도 측정기법 개발 및 검증)

  • Kim, Sangeun;Kim, Hyungdae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.549-555
    • /
    • 2015
  • A measurement technique of interfacial velocity in air-water separated flow by particle tracking velocimetry using an infrared camera (IR-PTV) was developed. As infrared light with wavelength in the range of 3-5 um could hardly penetrate water, IR-PTV can selectively visualize only the tracer particles existing in depths less than 20 um underneath the air-water interface. To validate the measurement accuracy of the IR-PTV technique, a measurement of the interfacial velocity of the air-water separated flow using Styrofoam particles floating in water was conducted. The interfacial velocity values obtained with the two different measurement techniques showed good agreement with errors less than 5%. It was found from the experimental results obtained using the developed technique that with increasing air velocity, the interfacial velocity proportionally increases, likely because of the increased interfacial stress.

Advanced estimation and mitigation strategies: a cumulative approach to enteric methane abatement from ruminants

  • Islam, Mahfuzul;Lee, Sang-Suk
    • Journal of Animal Science and Technology
    • /
    • v.61 no.3
    • /
    • pp.122-137
    • /
    • 2019
  • Methane, one of the important greenhouse gas, has a higher global warming potential than that of carbon dioxide. Agriculture, especially livestock, is considered as the biggest sector in producing anthropogenic methane. Among livestock, ruminants are the highest emitters of enteric methane. Methanogenesis, a continuous process in the rumen, carried out by archaea either with a hydrogenotrophic pathway that converts hydrogen and carbon dioxide to methane or with methylotrophic pathway, which the substrate for methanogenesis is methyl groups. For accurate estimation of methane from ruminants, three methods have been successfully used in various experiments under different environmental conditions such as respiration chamber, sulfur hexafluoride tracer technique, and the automated head-chamber or GreenFeed system. Methane production and emission from ruminants are increasing day by day with an increase of ruminants which help to meet up the nutrient demands of the increasing human population throughout the world. Several mitigation strategies have been taken separately for methane abatement from ruminant productions such as animal intervention, diet selection, dietary feed additives, probiotics, defaunation, supplementation of fats, oils, organic acids, plant secondary metabolites, etc. However, sustainable mitigation strategies are not established yet. A cumulative approach of accurate enteric methane measurement and existing mitigation strategies with more focusing on the biological reduction of methane emission by direct-fed microbials could be the sustainable methane mitigation approaches.

Analytical Methods of Levoglucosan, a Tracer for Cellulose in Biomass Burning, by Four Different Techniques

  • Bae, Min-Suk;Lee, Ji-Yi;Kim, Yong-Pyo;Oak, Min-Ho;Shin, Ju-Seon;Lee, Kwang-Yul;Lee, Hyun-Hee;Lee, Sun-Young;Kim, Young-Joon
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.1
    • /
    • pp.53-66
    • /
    • 2012
  • A comparison of analytical approaches for Levoglucosan ($C_6H_{10}O_5$, commonly formed from the pyrolysis of carbohydrates such as cellulose) and used for a molecular marker in biomass burning is made between the four different analytical systems. 1) Spectrothermography technique as the evaluation of thermograms of carbon using Elemental Carbon & Organic Carbon Analyzer, 2) mass spectrometry technique using Gas Chromatography/mass spectrometer (GC/MS), 3) Aerosol Mass Spectrometer (AMS) for the identification of the particle size distribution and chemical composition, and 4) two dimensional Gas Chromatography with Time of Flight mass spectrometry (GC${\times}$GC-TOFMS) for defining the signature of Levoglucosan in terms of chemical analytical process. First, a Spectrothermography, which is defined as the graphical representation of the carbon, can be measured as a function of temperature during the thermal separation process and spectrothermographic analysis. GC/MS can detect mass fragment ions of Levoglucosan characterized by its base peak at m/z 60, 73 in mass fragment-grams by methylation and m/z 217, 204 by trimethylsilylderivatives (TMS-derivatives). AMS can be used to analyze the base peak at m/z 60.021, 73.029 in mass fragment-grams with a multiple-peak Gaussian curve fit algorithm. In the analysis of TMS derivatives by GC${\times}$GC-TOFMS, it can detect m/z 73 as the base ion for the identification of Levoglucosan. It can also observe m/z 217 and 204 with existence of m/z 333. Although the ratios of m/z 217 and m/z 204 to the base ion (m/z 73) in the mass spectrum of GC${\times}$GC-TOFMS lower than those of GC/MS, Levoglucosan can be separated and characterized from D (-) +Ribose in the mixture of sugar compounds. At last, the environmental significance of Levoglucosan will be discussed with respect to the health effect to offer important opportunities for clinical and potential epidemiological research for reducing incidence of cardiovascular and respiratory diseases.