DOI QR코드

DOI QR Code

적외선 입자추적유속계를 이용한 액체-기체 분리유동 시 계면속도 측정기법 개발 및 검증

Development and Validation of a Measurement Technique for Interfacial Velocity in Liquid-gas Separated Flow Using IR-PTV

  • 김상은 (경희대학교 원자력공학과) ;
  • 김형대 (경희대학교 원자력공학과)
  • 투고 : 2014.12.11
  • 심사 : 2015.05.25
  • 발행 : 2015.07.01

초록

적외선 카메라를 이용한 입자추적유속계(IR-PTV)를 활용하여 물-공기 분리유동 시 계면속도를 측정하는 기법을 개발하였다. $3-5{\mu}m$ 파장대의 적외선은 물에 대해 $20{\mu}m$ 이하의 침투 깊이를 가지므로 입자추적유속계 기법에 활용 시 물-공기 계면 근처에 존재하는 추적입자들의 이동속도를 선택적으로 측정할 수 있다. IR-PTV 기법의 측정 정확도를 검증하기 위하여 물에 잘 뜨는 스티로폼 입자를 이용하여 $10^{\circ}$ 기울어진 경사면에서 공기-물 분리유동 시 계면속도를 측정하여 비교한 결과 5% 이내의 오차를 보이면서 잘 일치하였다. 개발한 기법을 이용하여 획득한 실험결과로부터 공기 속도가 증가함에 따라 계면속도가 비례하여 증가하는 것을 관찰하였으며 이는 계면전단력의 증가에 의한 것으로 해석된다.

A measurement technique of interfacial velocity in air-water separated flow by particle tracking velocimetry using an infrared camera (IR-PTV) was developed. As infrared light with wavelength in the range of 3-5 um could hardly penetrate water, IR-PTV can selectively visualize only the tracer particles existing in depths less than 20 um underneath the air-water interface. To validate the measurement accuracy of the IR-PTV technique, a measurement of the interfacial velocity of the air-water separated flow using Styrofoam particles floating in water was conducted. The interfacial velocity values obtained with the two different measurement techniques showed good agreement with errors less than 5%. It was found from the experimental results obtained using the developed technique that with increasing air velocity, the interfacial velocity proportionally increases, likely because of the increased interfacial stress.

키워드

참고문헌

  1. Bae, B. U., Yun, B. J., Kim, S., Kang, H. K., Goldenberg, A. A. and Bezerghi, A., 2012, "Design of Condensation Heat Exchanger for the PAFS (Passive Auxiliary Feedwater System) of APR+ (Advanced Power Reactor Plus)," Mechanism and Machine Theory, Vol. 20, No. 5, pp. 449-464. https://doi.org/10.1016/0094-114X(85)90049-7
  2. Kang, H.C. and Kim, M.H., 1994, "Velocity and Temperature Profiles of Steam-Air Mixture on the Film Condensation," Trans. Trans. Korean Soc. Mech. Eng. ME, Vol. 18, No. 10, pp. 2675-2685.
  3. Lee, E.S., 2006, "Conjugate Heat Transfer of Laminar Film Condensation Along a Horizontal Plate," Trans. Korean Soc. Mech. Eng. B, Vol. 30, No. 3, pp. 238-245. https://doi.org/10.3795/KSME-B.2006.30.3.238
  4. Lee, E.S. and Lee, S.-H, 2008, "The Effect of Pressure on Laminar Film Condensation along a Horizontal Plate," Trans. Korean Soc. Mech. Eng. B, Vol. 32, No. 12, pp. 945-953. https://doi.org/10.3795/KSME-B.2008.32.12.945
  5. Mayhew, Y. R., Griffiths, P. J. and Philips, J. W., 1965, "Effect of Vapor Drag on Laminar Film Condensation on a Vertical Surface," Proc. Instn. Mech. Engrs., Conference Proceedings June 1965, Vol. 180, pp. 280-287.
  6. Denny, V. E. and South, V., 1972, "Effects of Forced Flow, Noncondensable and Variable Properties on Film Condensation of Pure and Binary Vapors at the Forward Stagnation Point of a Horizontal Cylinder," Int. J. Heat Mass Transfer, Vol. 15, pp. 2133-2142. https://doi.org/10.1016/0017-9310(72)90037-3
  7. Jacob, H. R., 1966, "An Integral Treatment of Combined Body Force and Forced Convection in Laminar Film Condensation," Int. J. Heat Mass Transfer, Vol. 9, pp. 637-648. https://doi.org/10.1016/0017-9310(66)90040-8
  8. Kim, D. E., Yang, K. H., Hwang, K. W., Ha, Y. H. and Kim, M. H., 2011, "Simple Heat Transfer Model for Laminar Film Condensation in a Vertical Tube," Nuclear Engineering and Design, Vol. 241, pp. 2544-2548. https://doi.org/10.1016/j.nucengdes.2011.04.041
  9. Wallis, G. B., "Annular Two-Phase Flow-Parts 1 and 2," ASME J. Basic Engineering, Vol. 92, pp. 59-81.
  10. Kang, H. C. and Kim, M. H., 1992, "Measurement of Three-dimensional Wave Form and Interfacial Area in an Air-water Stratified Flow," Nuclear Engineering and Design, Vol. 136, pp. 347-360. https://doi.org/10.1016/0029-5493(92)90033-R
  11. Nakamura, H., Kondo, M. and Kukita, Y., 1998, "Simultaneous Measurement of Liquid Velocity and Interface Profiles of Horizontal Duct Wavy Flow by Ultrasonic Velocity Profile Meter," Nuclear Engineering and Design, Vol. 184, pp. 339-348. https://doi.org/10.1016/S0029-5493(98)00207-6
  12. Dracos, Th., 1996, "Three-Dimensional Velocity and Vorticity Measuring and Image Analysis Techniques, Particle Tracking Velocimetry (PTV)," ERCOFTAC Series, Vol. 4, pp. 155-160. https://doi.org/10.1007/978-94-015-8727-3_7
  13. Cierpka, C., Lutke, B. and Kahler, C. J., 2013, "Higher Order Multi-frame Particle Particle Tracking Velocimetry," Exp. Fluids, Vol. 54. pp. 1533-1544. https://doi.org/10.1007/s00348-013-1533-3
  14. Liu. D., Garimella, S. V. and Wereley, S. T., 2005, "Infrared Micro-particle Image Velocimetry," Experiments in Fluids, Vol. 38, pp. 385-392. https://doi.org/10.1007/s00348-004-0922-z
  15. Jones, B J., Lee, P. S. and Garimella, S. V., 2008, "Infrared Micro-particle Image Velocimetry Measurements and Prediction of Flow Distribution in a Microchannel Heat Sink," Int. J. Heat Mass Transfer, Vol. 51. pp. 1877-1887. https://doi.org/10.1016/j.ijheatmasstransfer.2007.06.034
  16. Wieliczka, D. M., Weng, S. and Querry, M. R., 1989, "Wedge Shaped Cell for Highly Absorbent Liquids: Infrared Optical Constants of Water," Applied optics, Vol. 28, pp.1714-1719. https://doi.org/10.1364/AO.28.001714
  17. Mirsepassi, A. and Rankin, D. D., 2012, "Particle Image Velocimetry in Viscoelastic Fluids and Particle Interaction Effects," Proceedings of 16th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics.
  18. Meinhart, C.D., Wereley, S.T. and Gray, M.H.B., 2000, "Volume Illumination for Two-dimensional Particle Image Velocimetry," Measurement Sci. Technol., Vol. 11, pp. 809-814. https://doi.org/10.1088/0957-0233/11/6/326

피인용 문헌

  1. Semi-mechanistic model for the interfacial velocity of gravity-driven laminar wavy film flow and its validation using infrared particle tracing velocimetry pp.1432-1181, 2018, https://doi.org/10.1007/s00231-018-2523-z