• Title/Summary/Keyword: Toxic zinc

Search Result 98, Processing Time 0.037 seconds

Disease inducing material ; Zinc Oxide nanowire detection (질병 유발 독성 물질(산화아연 나노선) 검출 기술 개발)

  • You, Juneseok;Park, Jinsung;Jang, Kwewhan;Lee, Sangmyung;Na, Sungsoo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.81-82
    • /
    • 2014
  • Recently it is often reported about toxic nanomaterials to organisms. In other words, it is called nanotoxicity, toxic nanomaterials have extremely toxic properties. Zinc oxide is widely used as a promising nanomaterials, but some researchers are warning that nanotype zinc oxide has nanotoxicity. One of typical zinc oxide materials is a zinc oxide nanowire, especially, there is no technique which is detecting a zinc oxide nanowire because of its geometric. In here, we use reduced graphene oxide in order to detect zinc oxide nanowire and use DNA immobilized cantilever sensor, we detect graphene wrapped zinc oxide nanowire. Detection of a zinc oxide nanowire is measured by shifting of cantilever's resonance frequency based on vibration theory. It is proved that cantilever sensor is valid for nanomaterial detection. We showed that detection of a zinc oxide nanowire is successful.

  • PDF

Excess zinc uptake in Paronychiurus kimi(Collembola) induces toxic effects at the individual and population levels

  • Son, Jino;Lee, Yun-Sik;Kim, Yongeun;Wee, June;Ko, Euna;Cho, Kijong
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.3
    • /
    • pp.335-342
    • /
    • 2019
  • The purpose of this study was to investigate the toxic effects of zinc in collembolan Paronychiurus kimi at the individual (survival and juvenile production) and population (population growth and age structure) levels after 28 days of exposure in artificially spiked soil. These toxic effects were interpreted in conjunction with the internal zinc concentrations in P. kimi. The EC50 value for juvenile production based on the total zinc concentration was 457 mg Zn kg-1 dry soil, while the LC50 value for adult survival and ri=0 value for population growth were within the same order of magnitude (2,623 and 1,637 mg Zn kg-1 dry soil, respectively). Significant differences in adult survival, juvenile production, and population growth compared with the control group were found at concentrations of 1,500, 375, and 375 mg Zn kg-1 dry or higher, respectively, whereas significant differences in the age structure, determined by the proportion of each age group in the population, were observed in all treatment groups. It appeared that the internal zinc level in P. kimi was regulated to some extent at soil zinc concentrations of ≤375 mg Zn kg-1 dry soil, but not at high soil zinc concentrations. These results indicate that, despite zinc being regulated by P. kimi, excess zinc exceeding the regulatory capacity of P. kimi can trigger changes in the responses at the individual and population levels. Given that population dynamics are affected not only by individual level but also by population level endpoints, it is concluded that the toxic effects of pollutants should be assessed at various levels.

Diagnostic Assay of Toxic Zinc in an Ex Vivo Cell Using Voltammetry

  • Ly, Suw-Young;Yoo, Hai-Soo
    • Toxicological Research
    • /
    • v.28 no.2
    • /
    • pp.123-127
    • /
    • 2012
  • Voltammetric detection of the toxic Zn ion was investigated using a fluorine-doped graphite pencil electrode (FPE). It is notable from the study that pencils were used as reference and working electrodes. In all the experiments, a clean seawater electrolyte solution was used to yield good results. The analytical working range was attained to 10 ${\mu}gL^{-1}$. The optimized voltammetric condition was examined to maximize the effect of the detection of trace Zn. The developed sensor was applied to an earthworm's tissue cell. It was found that the methods can be applicable to in vivo fluid or agriculture soil and plant science.

A STUDY ON THE CYTOTOXICITY OF THE ROOT CANAL SEALERS (근관충전용(根管充塡用) sealer의 세포독성(細胞毒性)에 관한 연구(硏究))

  • Lee, Seung-Jong;Kim, Yung-Hai
    • Restorative Dentistry and Endodontics
    • /
    • v.16 no.1
    • /
    • pp.25-40
    • /
    • 1991
  • Four root canal sealers, Apatite Root Sealer I and II composed mainly of hydroxyapatite/tricalciumphosphate, Sealapex containing calcium hydroxide, and Roth Sealer composed of zinc oxide - eugenol were compared on the culture of L929 fibroblasts. MIT (Methyl Thiazole Tetrazolium Bromide) colorimetric technique was used to measure the mitochondrial dehydrogenase activity. Results were as follows: 1. Hydroxyapatite/tricalcium phosphate mixed sealers were significantly less toxic compared with calcium hydroxide and zinc oxide - eugenol type sealers. High pH of the calcium hydroxide sealer and release of eugenol component from the zinc oxide - eugenol type sealer were presumed to be the cause of the toxicity of these two sealers. In no cases, there were more cytoblastic effects in hydroxyapatite/tricalcium phosphate mixed sealers compared to the control groups. 2. In all experimental groups, toxicity was decreased as dilutions were increased. However in zinc oxide-eugenol type sealer the cell activity was weakened for all dilution groups. 3. Regarding the effect of setting time, Apatite I and Sealapex were less toxic as the setting progressed. Apatite II kept constant regardless of the different time ellapsed after setting but Roth sealer revealed significantly higher toxicity for all experimental groups. 4. Comparing two different culture periods of 24 hours and 72 hours, Apatite I showed higher cell activities in longer period(72 hours) while Apatite II did not. Sealapex and Roth sealer, however, showed significantly lower cell activities in longer period.

  • PDF

Effects of Cadmium and Zinc on Plasma ACTH and Serum Cortisol Levels in Rats (카드뮴 및 아연이 백서 혈장 ACTH 및 혈청 Cortisol에 미치는 영향)

  • 김주영
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.2
    • /
    • pp.37-42
    • /
    • 1997
  • The toxic and detoxifying effects of cadmium and zinc on rat plasma ACTH and serum cortisol levels were investigated in rats. Rats were injected by i.p. with saline (0.9%), cadmium chloride (0.25 or 0.5mg/kg body weight) and pretreated with zinc chloride (4mg/kg body weight) before cadmium chloride treatment 1 or 2 weeks, respectively. The ACTH levels were no significant differences in cadmium 0.25mg/kg-treated group, but were significantly decreased in cadmium 0.5mg/kg-treated group compared with normal group. The ACTH levels after zinc pretreatment for 1 week were significantly increased but zinc pretreatment for 2 week were no difference. The serum cortisol levels of cadmium treated rats were significantly decreased, but were increased in zinc pretreated rats. The results showed that the zinc have some protective effect on cadmium toxicity in rats.

  • PDF

Copper, Zinc, and Aluminium Level in Scalp Hair Samples of Daegu and Kyungbuk Residents

  • Kim, Min-Jeong;Kim, Ki-Sok
    • Biomedical Science Letters
    • /
    • v.16 no.4
    • /
    • pp.323-330
    • /
    • 2010
  • Although copper and zinc are essential metals for human health, excessive level of these metals is toxic. Besides, aluminum is known to induce various adverse health effects including neurological disorders. Therefore, monitoring the human body burden of these metals is important in preventing adverse health effects. In this study, we assessed the exposure to copper, zinc, and aluminum among an adult population residing in Daegu and Kyungbuk areas. Based on data from 171 participants, we found that the geometric mean copper, zinc, and aluminum concentrations in hair were $15.1\;{\mu}g/g$ [95% confidence interval (CI): 13.1~17.5], 76.9 (95% CI: 70.4~84.1), and $1.11\;{\mu}g/g$ (95% CI: 0.81~1.51), respectively. The copper concentrations in hair were significantly related to age, education, and residence area. In addition, zinc concentrations in hair were significantly related to age, whereas higher hair aluminum concentrations were related to alcohol drinking. Correlations between copper and zinc in hair had a significant positive correlation. Our findings suggest that the body burden of copper, zinc, and aluminum varies according to demographic factors, and hair could be used as a valuable biological medium for metal exposure.

Characterization of zinc tin oxide thin films by UHV RF magnetron co-sputter deposition

  • Hong, Seunghwan;Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.307.1-307.1
    • /
    • 2016
  • Amorphous zinc tin oxide (ZTO) thin films are being widely studied for a variety electronic applications such as the transparent conducting oxide (TCO) in the field of photoelectric elements and thin film transistors (TFTs). Thin film transistors (TFTs) with transparent amorphous oxide semiconductors (TAOS) represent a major advance in the field of thin film electronics. Examples of TAOS materials include zinc tin oxide (ZTO), indium gallium zinc oxide (IGZO), indium zinc oxide, and indium zinc tin oxide. Among them, ZTO has good optical and electrical properties (high transmittance and larger than 3eV band gap energy). Furthermore ZTO does not contain indium or gallium and is relatively inexpensive and non-toxic. In this study, ZTO thin films were formed by UHV RF magnetron co-sputter deposition on silicon substrates and sapphires. The films were deposited from ZnO and SnO2 target in an RF argon and oxygen plasma. The deposition condition of ZTO thin films were controlled by RF power and post anneal temperature using rapid thermal annealing (RTA). The deposited and annealed films were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), ultraviolet and visible light (UV-VIS) spectrophotometer.

  • PDF

Application and Evaluation of Cleaner Production Technology in Zinc Plating Process (아연도금공정에서의 청정생산기술의 적용 및 평가)

  • Lee, H.K.;Koo, S.B.
    • Clean Technology
    • /
    • v.9 no.2
    • /
    • pp.63-69
    • /
    • 2003
  • The metal finishing industry generates a variety of pollutants such as acidic or alkaline wastewater, chromic compounds, cyanide, heavy metals, and toxic materials. Especially, zinc plating process is one of the processes which cause serious environmental problems. In this study, we applied the proven optimum technology to important unit processes in terms of implement effects through the process diagnosis and analysis. This study aimed to improve the working environment and the environmental pollutions in zinc plating process.

  • PDF

Recycling of rayon industry effluent for the recovery and separation of Zn/Ca using Thiophosphinic extractant

  • Jha, M.K.;Kumar, V.;Bagchi, D.;Singh, R.J.;Lee, Jae-Chun
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2006.05a
    • /
    • pp.78-85
    • /
    • 2006
  • In textile industries, waste effluent containing zinc is generated during the manufacture of rayon yarn from the wood pulp or cotton linters. Due to the strict environmental regulations and the presence of toxic metallic and other constituents, the discharge of industrial effluents in the sewage or disposal of solid sludge as landfill is restricted. Before recycling of zinc as zinc sulphate solution to the spinning-bath of the rayon manufacturing plant the zinc sulphate solution must be free from calcium, which is deleterious to the process as gypsum precipitates with the increase in concentration and forms scale in the bath. In the present work an attempt has been made to develop a process following solvent extraction technique using thiophosphinic extractants, Cyanex 272 and 302 modified with isodecanol and diluted in kerosene to recover zinc from rayon effluent. Various process parameters viz. extraction of zinc from different concentration of solution, distribution ratio, selective extraction, O/A ratio on extraction and stripping from the loaded organic, complex formation in the organic phase etc. have been studied to see the feasibility of the process. The extractant Cyanex 302 has been found selective for the recovery of 99.99% of zinc from the effluent above equilibrium pH 3.4 maintaining the O/A ratio of 1/30 leaving all the calcium in the raffinate. It selectively extracted zinc in the form of complex $[R_{2}Zn.3RH]_{org}$ and retained all the calcium in the aqueous raffinate. The zinc from the loaded Cyanex 302 can be stripped with 10% sulphuric acid at even O/A ratio of 10 without affecting the stripping efficiency. The stripped solution thus obtained could be recycled in the spinning bath of the rayon plant. The raffinate obtained after the recovery of zinc could be disposed safely without affacting environment.

  • PDF

Effect of Water Hardness on Toxicity of Cadmium and Zinc (수계 내 경도가 Cd와 Zn 독성에 미치는 영향)

  • Yoon, Sung Ho;Ha, Hong Joo;Lee, Sung Jong;Jho, Eun Hea
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.5
    • /
    • pp.556-562
    • /
    • 2017
  • Heavy metals in water systems are being managed on the concentration-based guidelines in Korea. However, various chemicals present in water can interact with heavy metals affecting their toxicity. Such interactions are not considered in the concentration-based guidelines. This study investigated the effect of hardness and coexisting heavy metals on heavy metal toxicity to emphasize the importance of having the effect-based guidelines together with the concentration-based guidelines in water management. The toxic effects of Cd, Zn, or mixtures of Cd and Zn were studied with Daphnia magna as a test species following the standard test method at different hardness conditions (100, 200, and $300mg\;L^{-1}$ as $CaCO_3$). The toxicities of single metal solutions and mixtures showed a decreasing trend with increasing hardness, and this can be attributed to the competition between heavy metals and cations such as calcium ions ($Ca^{2+}$) that cause hardness. The predicted toxicities of the heavy metal mixtures from the single metal toxicity deviated from the measured toxicities, and the predicted toxic effects tend to be greater than the measured toxic effects suggesting that Cd and Zn are in competition. This shows the limitations of using predicted toxic effects and the needs for further studies on mixture toxicities. Overall, this study shows that the management of heavy metals in waters needs to employ the effect-based guidelines together with the concentration-based guidelines.