• Title/Summary/Keyword: Touch screen device

Search Result 81, Processing Time 0.029 seconds

A Study on Touch-screen Development Using Visible-ray (가시광선을 이용한 터치스크린 구현에 대한 연구)

  • Park, Jun-Woo;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.3
    • /
    • pp.50-61
    • /
    • 2011
  • The Infrared touch method is generally used for a mid and large-size touch screen. But this method has several problems, such as difficulty with installation of a touch-object recognition device, limited application and coordinate error in multi-point touch system. Since we can take advantages of both color and local information when we use general cameras for a touch screen, a touch screen using general camera is more efficient than infrared one. It also has an advantage of easy installation of a touch-object device. However, it did not much appeal in a market because of several problems, such as color sensitivity, illumination and reflected light. In this paper, we study a method for a touch screen using a general camera and image processing method to recognize touch objects and coordinate calculation method to single and multi-point touch screen. It has the same recognition performance as an infrared touch screen for single-point method. And it does not have ghost point problem by using distance information of touch object and camera in multi-point touch system. But recognition performances of multi-point touch screen are less than single-point. If we improve execution time, this method can replace an infrared method for a single point touch screen, according to result of experience.

Improving the performance of touch screen in mobile device (휴대기기에서 Touch screen 성능 개선 연구)

  • Shin, Jae-Yong;Choi, Jin-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06d
    • /
    • pp.16-18
    • /
    • 2012
  • 이 논문은 멀티프로세싱으로 인해서 발생할 수 있는 touch screen polling I/O 성능 이슈를 다루고 있다. Touch screen이 장착된 휴대용기기가 점차 대중화되고 그 편한 사용성 만큼이나 쉽게 익숙해지고 있다. 하지만, 휴대용기기내에서 여러 가지 작업(multiprocessing or multitasking)을 동시에 처리하면서 생기는 문제들 중에 touch screen의 반응이 의도하지 않은 동작결과로 나타나는 경험을 하게 된다. 이 논문에서 이러한 부분에 집중하여 우선순위가 높은 다른 작업(process or task)과 동시에 touch screen 처리과정을 분석하여 개선책을 제안코자 한다. 또한 우리는 이러한 개선책을 증명하기 위해서 실제 구현을 통해서 확인한다. 개선된 방법은 이 상황과 비슷한 조건에서 활용이 가능할 것으로 판단한다.

Input Device of Non-Touch Screen Using Vision (비전을 이용한 비접촉 스크린 입력장치)

  • Seo, Hyo-Dong;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1946-1950
    • /
    • 2011
  • This paper deals with an input device without the touch. The existing touch screens have some problems such as the week durability by frequent contact and the high cost by complex hardware configuration. In this paper, a non-touch input device is proposed to overcome these problems. The proposed method uses a skin color generated by the HCbCr color model and a hand region obtained by the labeling technique. In Addition, the skeleton model is employed to improve the recognition performance of the hand motion. Finally, the experiment results show the applicability of the proposed method.

Preparation of Conductive Leather Gloves for Operating Capacitive Touch Screen Displays (정전용량방식 터치스크린에 작동하는 전도성 가죽장갑 소재의 제조)

  • Hong, Kyung Hwa
    • Fashion & Textile Research Journal
    • /
    • v.14 no.6
    • /
    • pp.1018-1023
    • /
    • 2012
  • Smartphone is integrated into the daily lives of all types of people not even young generation. A touch screen display is a primary input device of a smart phone, a tablet computer, etc. While there are many tough technologies in existence, resistive and capacitive are dominant and currently lead the touch screen panel industry. And a capacitive touch screen panel widely used in smart phones is coated with a material that stores electrical charges. In this study, we tried to manufacture gloves produced with electro-conducting leather as a tool to operate a touch panel screen. Therefore, electrically conductive materials, Polyaniline(PANI), Poly(3,4-ethylenedioxythiophene) (PEDOT), and Carbon nanotubes (CNT) were applied to the surface of leather to be used as a touching operator for capacitive touch screen panel. The leather samples were treated by simple painting method; firstly, they were painted with aqueous solution containing each of the electrically conductive materials and then dried. This cycle was repeated three times. Consequently, the treated leather samples showed electrical conductivity and reasonable working performance to the capacitive touch screen. And, PANI showed the best performance and highest electrical conductivity, and then PEDOT and, CNT in decreasing order. This is because the solubilities of PANI and PEDOT show higher than dispersibility of CNT. Thus, the concentration of conducting polymers was greater than that of CNT in the treating solutions.

Touch Screen Sensing Circuit with Rotating Auto-Zeroing Offset Cancellation

  • Won, Dong-Min;Kim, HyungWon
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.3
    • /
    • pp.189-196
    • /
    • 2015
  • In this paper, we present a rotating auto-zeroing offset cancellation technique, which can improve the performance of touch screen sensing circuits. Our target touch screen detection method employs multiple continuous sine waves to achieve a high speed for large touch screens. While conventional auto-zeroing schemes cannot handle such continuous signals properly, the proposed scheme does not suffer from switching noise and provides effective offset cancellation for continuous signals. Experimental results show that the proposed technique improves the signal-to-noise ratio by 14 dB compared to a conventional offset cancellation scheme. For the realistic simulation results, we used Cadence SPECTRE with an accurate TSP model and noise source. We also applied an asymmetric device size (10% MOS size mismatch) to the OP Amp design in order to measure the effectiveness of offset cancellation. We implemented the proposed circuit as part of a touch screen controller system-on-chip by using a Magnachip/SK Hynix 0.18-µm complementary metal-oxide semiconductor (CMOS) process.

Extracting Flick Operator for Predicting Performance by GOMS Model in Small Touch Screen

  • Choi, Mikyung;Lee, Bong Geun;Oh, Hyungseok;Myung, Rohae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.179-187
    • /
    • 2013
  • Objective: The purpose of this study is to extract GOMS manual operator, except for an experiment with participants. Background: The GOMS model has advantage of rapid modeling which is suitable for the environment of technology development which has a short life cycle products with a fast pace. The GOMS model was originally designed for desktop environment so that it is not adequate for implementing into the latest HCI environment such as small touch screen device. Therefore, this research proposed GOMS manual operator extraction methodology which is excluded experimental method. And flick Gesture was selected to explain application of proposed methodology to extract new operator. Method: Divide into start to final step of hand gesture needed to extract as an operator through gesture task analysis. Then apply the original GOMS operator to each similar step of gesture and modify the operator for implementation stage based on existing Fitts' law research. Steps that are required to move are modified based on the Fitts' law developed in touch screen device. Finally, new operator can be derived from using these stages and a validation experiment, performed to verify the validity of new operator and methodology by comparing human performance. Results: The average movement times of the participants' performance and the operator which is extracted in case study are not different significantly. Also the average of movement times of each type of view study is not different significantly. Conclusion: In conclusion, the result of the proposed methodology for extracting new operator is similar to the result of the experiment with their participants. Furthermore the GOMS model included the operator by the proposed methodology in this research could be applied successfully to predict the user's performance. Application: Using this methodology could be applied to develop new finger gesture in the touch screen. Also this proposed methodology could be applied to evaluate the usability of certain system rapidly including the new finger gesture performance.

Dial Menu User Interface Using Touch Screen (터치스크린을 이용한 다이얼 메뉴 유저 인터페이스)

  • Choi, Jung-Hwan;Kim, Youn-Woo;Jang, Hyun-Su;Eom, Young-Ik
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.584-589
    • /
    • 2008
  • The in put system using the touch screen directly makes the input signals by the contact on the screen without the assistance of peripherals such as a pen or hands. These kinds of input systems using the flexible hands is maximizing suppleness and intuition of the input rather than those systems using a keyboard or a mouse which are moving a cursor or typing a word. However, using hands for an input may give rise to a mistake in control. And there are few interfaces utilizing the touch screen. Incorrectness and insufficiency of the interface are the weak point of the touch screen systems. In this paper, we propose the dial menu user interface for the mobile devices using touch screen for an efficient input. In this method, it consists of 2 states(Inactive states, Active states) and 4 actions(Rotation, Zoom in, and Zoom out, and Click). The intuitive control utilizing the suggested method overcomes the incorrect pointing, weak point of the touch screen system, and boosts the searching menu by utilizing the drag function of the touch screen.

  • PDF

The Proposal of the Conceptual Model for Cognitive Action of Smart Device (스마트 디바이스의 인지적 행동에 대한 개념모델 제안)

  • Song, Seung-Keun;Kim, Tae-Wan;Kim, Chee-Yong
    • Journal of Digital Contents Society
    • /
    • v.11 no.4
    • /
    • pp.529-536
    • /
    • 2010
  • Currently many people are awfully concerned about smart device in domestic and foreign mobile market. The need of smart device has been rapidly increased. Unlike a feature phone smart devices provide us with an intuitive interface which is easy to control. They are enable to smoothly interact between user and device. Though higher market outlook, there is a lack of empirical research on user interface in touch screen based on smart device. In this paper, we propose the touch interface conceptual model concentrating on user based on the result of previous research. Materials of this research are three kinds of smart devices which are currently released. Through expert's depth interview and observation of user, user's cognitive actions in smart device are defined. Since the method of the touch interface which is suitable for the action has been derived, we have proposed the conceptual model of user's cognitive action. This research imply to offer the excellent design guideline in order to implement touch interface to optimize user experience in touch screen based on smart device to release in the future.

Fingertip Touch Recognition using Shadow Information for General Wall Touch Screen (일반벽 터치 스크린의 손가락 터치 판별을 위한 그림자 정보의 사용)

  • Jeong, Hyun-Jeong;Hwang, Tae-Ryang;Choi, Yong-Gyun;Lee, Suk-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.12
    • /
    • pp.1430-1436
    • /
    • 2014
  • We propose an algorithm which detects the touch of the fingertip on a general wall using the shadow information. Nowadays, there is a demand for presentation systems which can perceive the presenter's action so that the presenter can use natural movements without extra interface hardware. One of the most fundamental techniques in this area is the detection of the fingertip and the recognition of the touch of the fingertip on the screen. The proposed algorithm recognizes the touch of the fingertip without using the depth information, and therefore needs no depth or touch sensing devices. The proposed method computes the convex hull points of both the fingertip and the shadow of the fingertip, and then computes the distance between those points to decide whether a touch event has occured. Using the proposed method, it is possible to develop a new projector device which can perceive a fingertip touch on a general wall.

Development of a Smartphone Interface using Infrared Approach (적외선 방식의 스마트 폰 인터페이스 개발)

  • Jang, Jae-Hyeok;Kim, Byung-Ki;Song, Chang-Geun;Ko, Young-Woong
    • The KIPS Transactions:PartA
    • /
    • v.18A no.2
    • /
    • pp.53-60
    • /
    • 2011
  • Touch screen technologies are widely used as the basic input for mobile devices. However, for smartphones, touch screens have been utilized as a simple device that merely process text data. It has been considered an inappropriate multimedia input device for one to use design applications, such as painting, due to its narrow touch screen space, which makes it inconvenient to draw pictures. In this study, we propose to enhance this weakness by using infrared approach on a smartphone's input interface. The usage of infrared approach will allow for quick and accurate operations without facing any space constraints. In this paper, we provide a detailed description of the design and implementation of a smartphone user interface using infrared pointing device. Additionally, using experimental results, we prove that our proposed approach is more convenient and efficient than traditional touch screen approaches used in smartphones.