• 제목/요약/키워드: Total variation algorithm

검색결과 103건 처리시간 0.029초

A Comparison of the Rudin-Osher-Fatemi Total Variation model and the Nonlocal Means Algorithm

  • Adiya, Enkhbolor;Choi, Heung-Kook
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 한국멀티미디어학회 2012년도 춘계학술발표대회논문집
    • /
    • pp.6-9
    • /
    • 2012
  • In this study, we compare two image denoising methods which are the Rudin-Osher-Fatemi total variation (TV) model and the nonlocal means (NLM) algorithm on medical images. To evaluate those methods, we used two well known measuring metrics. The methods are tested with a CT image, one X-Ray image, and three MRI images. Experimental result shows that the NML algorithm can give better results than the ROF TV model, but computational complexity is high.

  • PDF

Application of Total Variation Algorithm in X-ray Phantom Image with Various Added Filter Thickness : GATE Simulation Study (다양한 두께의 부가 여과판을 적용한 X-선 영상에서의 Total Variation 알고리즘 적용 : GATE 시뮬레이션 연구)

  • Park, Taeil;Jang, Sujong;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • 제13권5호
    • /
    • pp.773-778
    • /
    • 2019
  • Images using X-rays are essential to diagnosis, but noise is inevitable in the image. To compensate for this, a total variation (TV) algorithm was presented to reduce the patient's exposure dose while increasing the quality of the images. The purpose of this study is to verify the effect on the image quality in radiographic imaging according to the thickness of the additional filtration plate through simulation, and to evaluate the usefulness of the TV algorithm. By using the Geant4 Application for Tomographic Emissions (GATE) simulation image, the actual size, shape and material of the Polymethylmethacrylate (PMMA) phantom were identical, the contrast to noise ratio (CNR) and coefficient of variation (COV) were compared. The results showed that the CNR value was the highest and the COV the lowest when applying the TV algorithm. In addition, we can acquire superior CNR and COV results with 0 mm Al in all algorithm cases.

A Study on Feasibility of Total Variation Algorithm in Skull Image using Various X-ray Exposure Parameters (다양한 X-ray 촬영조건을 이용하여 획득한 skull 영상에서의 Total Variation 알고리즘의 가능성 연구)

  • Park, Sung-Woo;Lee, Jong-In;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • 제13권5호
    • /
    • pp.765-771
    • /
    • 2019
  • Noise in skull X-ray imaging is inevitable, which reduces imaging quality and diagnostic accuracy and increases errors due to the nature of digital imaging devices. Increasing the dose can attenuate noise, but that could lead to big problems with higher exposure dose received by patients. Thus, noise reduction algorithms are actively being studied at low doses to solve dose problems and reduce noise at the same time. Wiener filter and median filter have been widely used, with the disadvantages of poor noise reduction efficiency and loss of much information about imaging boundary. The purpose of this study is to apply total variation (TV) algorithm to skull X-ray imaging that can compensate for the problems of previous noise reduction efficiency to assess quantitatively and compare them. For this study, skull X-ray imaging is obtained using various kVp and mAs using the skull phantom using the X-ray device of Siemens. In addition, contrast to noise ratio (CNR) and coefficient of variation (COV) are compared and measured when noisy image, median filter, Wiener filter and TV algorithm were applied to each phantom imaging. Experiments showed that when TV algorithms were applied, CNR and COV characteristics were excellent under all conditions. In conclusion, we've been able to see if we can use TV algorithm to improve image quality and CNR could be seen to increase due to the decrease in noise as the amount of increased mAs. On the other hand, COV decreased as the amount of increased mAs, and when kVp increased, noise was reduced and the transmittance was increased, so COV was reduced.

Anisotropic Total Variation Denoising Technique for Low-Dose Cone-Beam Computed Tomography Imaging

  • Lee, Ho;Yoon, Jeongmin;Lee, Eungman
    • Progress in Medical Physics
    • /
    • 제29권4호
    • /
    • pp.150-156
    • /
    • 2018
  • This study aims to develop an improved Feldkamp-Davis-Kress (FDK) reconstruction algorithm using anisotropic total variation (ATV) minimization to enhance the image quality of low-dose cone-beam computed tomography (CBCT). The algorithm first applies a filter that integrates the Shepp-Logan filter into a cosine window function on all projections for impulse noise removal. A total variation objective function with anisotropic penalty is then minimized to enhance the difference between the real structure and noise using the steepest gradient descent optimization with adaptive step sizes. The preserving parameter to adjust the separation between the noise-free and noisy areas is determined by calculating the cumulative distribution function of the gradient magnitude of the filtered image obtained by the application of the filtering operation on each projection. With these minimized ATV projections, voxel-driven backprojection is finally performed to generate the reconstructed images. The performance of the proposed algorithm was evaluated with the catphan503 phantom dataset acquired with the use of a low-dose protocol. Qualitative and quantitative analyses showed that the proposed ATV minimization provides enhanced CBCT reconstruction images compared with those generated by the conventional FDK algorithm, with a higher contrast-to-noise ratio (CNR), lower root-mean-square-error, and higher correlation. The proposed algorithm not only leads to a potential imaging dose reduction in repeated CBCT scans via lower mA levels, but also elicits high CNR values by removing noisy corrupted areas and by avoiding the heavy penalization of striking features.

Sparse-View CT Image Recovery Using Two-Step Iterative Shrinkage-Thresholding Algorithm

  • Chae, Byung Gyu;Lee, Sooyeul
    • ETRI Journal
    • /
    • 제37권6호
    • /
    • pp.1251-1258
    • /
    • 2015
  • We investigate an image recovery method for sparse-view computed tomography (CT) using an iterative shrinkage algorithm based on a second-order approach. The two-step iterative shrinkage-thresholding (TwIST) algorithm including a total variation regularization technique is elucidated to be more robust than other first-order methods; it enables a perfect restoration of an original image even if given only a few projection views of a parallel-beam geometry. We find that the incoherency of a projection system matrix in CT geometry sufficiently satisfies the exact reconstruction principle even when the matrix itself has a large condition number. Image reconstruction from fan-beam CT can be well carried out, but the retrieval performance is very low when compared to a parallel-beam geometry. This is considered to be due to the matrix complexity of the projection geometry. We also evaluate the image retrieval performance of the TwIST algorithm -sing measured projection data.

Development of a Islanding Protection Algorithm for Distributed Resources (분산 전원의 고립 운전 진단 알고리즘 개발)

  • Jang, S.I.;Park, J.Y.;Kim, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.1287-1289
    • /
    • 2001
  • This paper presents the logic based islanding protection algorithm for distributed resources(DR) which are interconnected with distribution network. Due to the negative impacts from islanding operations of DR on protection, operation and management of distribution system, it is necessary to effectively detect the islanding operations of DR and disconnect it from distribution network rapidly. Generally, it is difficult to detect islanding operation by monitoring only one system parameter. The proposed islanding protection algorithm utilizes multi-criteria, voltage variation, phase displacement frequency variation, the variation of total harmonic distortion(THD) of current; therefore it effectively detects island operation of DR unit. We also verified the efficiency of the proposed algorithm using the radial distribution network of IEEE 34 bus model.

  • PDF

Impulse Noise Removal Using Noise Detector and Total Variation Optimization (잡음 검출기와 총변량 최적화를 이용한 영상의 임펄스 잡음제거)

  • Lee Im-Geun
    • The Journal of the Korea Contents Association
    • /
    • 제6권4호
    • /
    • pp.11-18
    • /
    • 2006
  • A new algorithm for removing salt and pepper impulse noise in image using impulse noise detector and total variation optimization is presented. The proposed two types of noise detectors which are based on the adaptive median filter, can detect impulse noise with high accuracy while reducing the probability of detecting image details as impulses. And the detectors maintain its performance independent of noise density. For removing impulses, total variation optimization is applied only to those detected noise candidate to reduces unnecessary computation. The proposed approach successfully remove impulse noise while preserving image details.

  • PDF

Real-time Denoising Using Wavelet Thresholding and Total Variation Algorithm (웨이블릿 임계치와 전변분 알고리즘을 사용한 실시간 잡음제거)

  • 이진종;박영석;하판봉;정원용
    • Journal of the Institute of Convergence Signal Processing
    • /
    • 제4권1호
    • /
    • pp.27-35
    • /
    • 2003
  • Because of the lack of translation invariance of wavelet basis, traditional wavelet thresholding denoising leads to pseudo-Gibbs phenomena in the vicinity of discontinuities of signal. In this paper, in order to reduce the pseudo-Gibbs phenomena, wavelet coefficients are thresholded and reconstruction algorithm is implemented through minimizing the total variation of denoising signal using subgradient descent algorithm. Most of experiments were performed under the non-real-time and real-time environments. In the case of non-real-time experiments, the algorithm that this paper proposes was found more effective than that of wavelet hard thresholding denoising by 2.794㏈(SNR) based on the signal to noise ratio. And lots of pseudo-Gibbs phenomena was removed visually in the vicinity of discontinuities. In the case of real-time experiments, the number of iteration was restricted to 60 times considering the performance time. It took 0.49 seconds and most of the pseudo-Gibbs phenomena were also removed.

  • PDF

SATURATION-VALUE TOTAL VARIATION BASED COLOR IMAGE DENOISING UNDER MIXED MULTIPLICATIVE AND GAUSSIAN NOISE

  • JUNG, MIYOUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제26권3호
    • /
    • pp.156-184
    • /
    • 2022
  • In this article, we propose a novel variational model for restoring color images corrupted by mixed multiplicative Gamma noise and additive Gaussian noise. The model involves a data-fidelity term that characterizes the mixed noise as an infimal convolution of two noise distributions and the saturation-value total variation (SVTV) regularization. The data-fidelity term facilitates suitable separation of the multiplicative Gamma and Gaussian noise components, promoting simultaneous elimination of the mixed noise. Furthermore, the SVTV regularization enables adequate denoising of homogeneous regions, while maintaining edges and details and diminishing the color artifacts induced by noise. To solve the proposed nonconvex model, we exploit an alternating minimization approach, and then the alternating direction method of multipliers is adopted for solving subproblems. This contributes to an efficient iterative algorithm. The experimental results demonstrate the superior performance of the proposed model compared to other existing or related models, with regard to visual inspection and image quality measurements.

Fast non-local means noise reduction algorithm with acceleration function for improvement of image quality in gamma camera system: A phantom study

  • Park, Chan Rok;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.719-722
    • /
    • 2019
  • Gamma-ray images generally suffer from a lot of noise because of low photon detection in the gamma camera system. The purpose of this study is to improve the image quality in gamma-ray images using a gamma camera system with a fast nonlocal means (FNLM) noise reduction algorithm with an acceleration function. The designed FNLM algorithm is based on local region considerations, including the Euclidean distance in the gamma-ray image and use of the encoded information. To evaluate the noise characteristics, the normalized noise power spectrum (NNPS), contrast-to-noise ratio (CNR), and coefficient of variation (COV) were used. According to the NNPS result, the lowest values can be obtained using the FNLM noise reduction algorithm. In addition, when the conventional methods and the FNLM noise reduction algorithm were compared, the average CNR and COV using the proposed algorithm were approximately 2.23 and 7.95 times better than those of the noisy image, respectively. In particular, the image-processing time of the FNLM noise reduction algorithm can achieve the fastest time compared with conventional noise reduction methods. The results of the image qualities related to noise characteristics demonstrated the superiority of the proposed FNLM noise reduction algorithm in a gamma camera system.