Browse > Article
http://dx.doi.org/10.1016/j.net.2018.12.013

Fast non-local means noise reduction algorithm with acceleration function for improvement of image quality in gamma camera system: A phantom study  

Park, Chan Rok (Department of Nuclear Medicine, Seoul National University Hospital)
Lee, Youngjin (Department of Radiological Science, Gachon University)
Publication Information
Nuclear Engineering and Technology / v.51, no.3, 2019 , pp. 719-722 More about this Journal
Abstract
Gamma-ray images generally suffer from a lot of noise because of low photon detection in the gamma camera system. The purpose of this study is to improve the image quality in gamma-ray images using a gamma camera system with a fast nonlocal means (FNLM) noise reduction algorithm with an acceleration function. The designed FNLM algorithm is based on local region considerations, including the Euclidean distance in the gamma-ray image and use of the encoded information. To evaluate the noise characteristics, the normalized noise power spectrum (NNPS), contrast-to-noise ratio (CNR), and coefficient of variation (COV) were used. According to the NNPS result, the lowest values can be obtained using the FNLM noise reduction algorithm. In addition, when the conventional methods and the FNLM noise reduction algorithm were compared, the average CNR and COV using the proposed algorithm were approximately 2.23 and 7.95 times better than those of the noisy image, respectively. In particular, the image-processing time of the FNLM noise reduction algorithm can achieve the fastest time compared with conventional noise reduction methods. The results of the image qualities related to noise characteristics demonstrated the superiority of the proposed FNLM noise reduction algorithm in a gamma camera system.
Keywords
Medical application; Gamma camera system; Noise reduction algorithm; Total variation noise reduction method; Evaluation of image quality;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 E.G. DePuey, J. Nucl. Cardiol. 19 (2012) 1085.   DOI
2 H.C. Kim, H.J. Kim, K. Kim, M.H. Lee, Y. Lee, Nucl. Eng. Technol. 49 (2017) 776.   DOI
3 C. Scheiber, Nucl. Instrum. Methods Phys. Res. 448 (2000) 513.   DOI
4 S.H. Kim, K. Seo, S.H. kang, S. Bae, H.J. Kwak, J.W. Hong, Y. Hwang, S.M. Kang, H.R. Choi, G.Y. Kim, Y. Lee, J. Magnetics 22 (2017) 570.   DOI
5 P. Chatterjee, P. Milanfar, IEEE Trans. Nucl. Sci. 19 (2010) 895.
6 E. Arias-Castro, D.L. Donoho, Ann. Stat. 37 (2009) 1172.   DOI
7 X. Zhang, Optik 127 (2016) 6821.   DOI
8 L.I. Rudin, S. Osher, E. Fatemi, Physica D 60 (1992) 259.   DOI
9 Y.M. Huang, M.K. Ng, Y.W. Wen, SIAM J. Imag. Sci. 2 (2009) 20.   DOI
10 K. Seo, S.H. Kim, S.H. Kang, J. Park, C.L. Lee, Y. Lee, J. Magnetics 21 (2016) 593.   DOI
11 A. Buades, B. Coll, J.-M. Morel, A non-local algorithm for image denoising, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2015, https://doi.org/10.1109/CVPR.2005.38.
12 A. Efros, T. Leung, in: Proceeding of IEEE International Conference on Computer Vision, vol. 2, 1999, p. 1033.
13 O. Gal, B. Dessus, F. Jean, F. Laine, C. Leveque, IEEE Trans. Nucl. Sci. 48 (2001) 1198.   DOI
14 F.J. Beekman, B. Vastenhouw, Phys. Med. Biol. 49 (2004) 4579.   DOI
15 H.O. Anger, J. Nucl. Med. 5 (1964) 515.
16 Y. Lee, H.J. Kim, Nucl. Instrum. Methods Phys. Res. 794 (2015) 54.   DOI
17 J.T. Dobbins III, E. Samei, N.T. Ranger, Y. Chen, Med. Phys. 33 (2006) 1466.   DOI
18 J. Wang, Y. Guo, Y. Ying, Y. Liu, Q. Peng, Fast non-local algorithm for image denoising, in: IEEE International Conference on Image Processing, 2006, https://doi.org/10.1109/ICIP.2006.312698.
19 J.T. Dobbins III, D.L. Ergun, L. Rutz, D.A. Hinshaw, H. Blume, D.C. Clark, Med. Phys. 22 (1995) 1581.   DOI