• 제목/요약/키워드: Total pressure efficiency

검색결과 319건 처리시간 0.027초

Effect of The Impeller Discharge Angle on the Performance of a Spurt Vacuum Pump

  • Lee, Ji-Gu;Kim, Youn-Jea
    • Applied Science and Convergence Technology
    • /
    • 제26권1호
    • /
    • pp.1-5
    • /
    • 2017
  • The spurt vacuum pump is widely used to transfer sludge and slurry, and to control flow rate in a variety of processing fields, such as the oil, chemical, and fiber industries. The efficiency of the pump depends on the design parameters of the impeller, such as the number of blades, and the blade angle. In this study, the effect of the configuration of the impeller discharge angle of a spurt vacuum pump, which influences total head, shaft power, and efficiency, was numerically investigated using the commercial code, ANSYS CFX ver. 16.1. In addition, the performance of the pump was evaluated on the basis of the correlations between the total head, pump efficiency, and pressure distribution.

보건용 마스크의 분진포집효율, 흡기저항 및 CO2 농도 (Dust Collection Efficiency, Inhalation Pressure, and CO2 Concentration in Health Masks)

  • 한돈희;김일순
    • 한국환경보건학회지
    • /
    • 제46권1호
    • /
    • pp.78-87
    • /
    • 2020
  • Objectives: To identify the degree of physical burden, a determination was undertaken of dust collection efficiency, inhalation pressure, and CO2 concentration related to health masks certified by the Ministry of Food and Drug Safety (MFDS). Methods: Twenty health masks were purchased on the market. Dust collection efficiency and inhalation pressure were determined in the same manner as in MFDS certification testing, respectively using TSI Model 8130 (TSI, U.S.) and ART Plus (Korea). CO2 concentrations for 20 subjects using a CO2 analyzer (G100, G150, Geotechnical Instrument Ltd., UK) were measured with a similar method as a total inward leakage test. In addition to CO2 levels, dead space volumes in the masks was determined for predicting concentrations of CO2 in inhalation air. Results: Most of the dust collection efficiencies found for the 20 masks were far higher than the standard. Four KF94s met KF99 and four KF80s even met KF94. Most inhalation pressures were also much lower than the standard, with many almost one-half of the standard. The mean and standard deviation of CO2 concentration in the mask were 2.9±0.44%. Considering dead volume, the prediction for CO2 concentration in the inhalation air was 4,395±1,266 ppm. Conclusions: For healthy men and women, the dust collection efficiency and inhalation pressure of health masks were not at a level that would affect their health. Although CO2 levels in the inhalation air were predicted not to affect health, research on the physiological effects of health masks on Koreans is needed for more precise research.

수평 배치된 분사구의 배치 간격에 따른 초음속 유동장 내 분사 유동의 침투 및 혼합 특성 (Effect of the distance between the adjacent injectors on penetration and mixing characteristics of the jet in supersonic crossflow)

  • 김세환;이형진
    • 항공우주시스템공학회지
    • /
    • 제12권4호
    • /
    • pp.81-89
    • /
    • 2018
  • 본 연구에서는 초음속 유동장 내 연료 분사시 연소기의 공간적인 제한 조건을 고려하여 복수의 분사기간 배치 간격을 변화시키고 그에 따른 유동 구조, 연료의 침투 거리 및 연료-공기의 혼합 특성을 비교 분석하였다. 이를 위하여 널리 알려진 단일 분사구를 이용한 실험 조건을 모사하여 적용된 수치 모델을 검토하였으며, 동일한 분사 조건을 갖는 복수의 분사기를 이용하여 비반응 유동 해석을 수행하였다. 해석 결과를 바탕으로 분사구 간 거리에 따라 전압력 손실, 침투 거리, 및 혼합 성능 등을 정량적으로 비교하였다. 해석 결과 분사구 간 배치 거리가 매우 짧은 경우 분사 연료가 서로 융합되면서 유동장이 2차원 특성을 나타내었고 전반적으로 낮은 혼합 효율 특성과 높은 전압력 손실을 발생하였다. 분사구 간 거리가 멀어짐에 따라 분사 가스간의 상호작용이 감소하면서 혼합 효율이 증가하고 전압력 손실이 낮아지는 것이 관찰되었다.

수리동력학적 분리장치에 의한 교량에서의 비점원 오염물질 처리시 운전변수와 분리효율에 관한 연구 (Operational Variables and Performance of Hydrodynamic Separator Treating Rainfall Runoff from Bridge)

  • 김연석;우강화;김영철
    • 한국물환경학회지
    • /
    • 제27권3호
    • /
    • pp.342-348
    • /
    • 2011
  • A hydrodynamic separator using natural free energy provided by bridge was operated for the treatment of stormwater runoff. The separator was automatically controlled by using electronic valve which is connected with pressure meter. Normally the separator was opened during dry days, but it was closed after the capture of first flush. The results indicated that the average pressure and the flow rate were directly affected by the rainfall intensity. The pressure was more than 3 meters as the rainfall intensity was above 5 mm/hr. The percent volume of underflow decreased as the pressure and flow rate increased, but the percent volume of overflow showed an opposite behavior. The concentration of total suspended solids (TSS) in underflow increased as a function of increasing pressure while it decreased in overflow. The TSS separation efficiency was evaluated based on mass balance. It ranged from 30% to 90% with the pressure ranging from 2 to 10 meters, and it was proportional to pressure and flow rate. The analysis of water balance indicated that around 13% of total runoff was captured by the separator as a first flush, and this runoff was separated as underflow and overflow with the respective percent volume of 29% and 71%. The pollutants budget was also examined based on mass balance. The results showed that the percent of TSS, $COD_{cr}$, TN and TP in underflow were 73%, 59%, 7.6% and 49%, respectively.

하수재이용 막여과 공정에서 막오염 저감을 위한 마이크로버블 적용성 평가 (Applicability evaluation of microbubble for membrane fouling reduction in wastewater reuse membrane process)

  • 이창하;김건엽;김형수;김지훈;이경일
    • 상하수도학회지
    • /
    • 제31권2호
    • /
    • pp.169-175
    • /
    • 2017
  • This study applied microbubbles to reduce membrane fouling in wastewater reuse membrane processes, evaluated and compared the transmembrane pressure with or without the application of microbubbles and the cleaning efficiency with the application of aeration and microbubbles. In addition, this study analyzed foulants removed from the membrane surface. Changes in the transmembrane pressure of membranes with the presence or absence of microbubbles were observed. As a result, transmembrane pressure (TMP) increasing rate decreased twofold when applying microbubbles to realize stable operations. This study compared and evaluated cleaning efficiency applying aeration and microbubbles. As a result, the cleaning efficiency was 5% higher on average when applying microbubbles. In turbidity and total organic carbon (TOC), foulants were discharged when applying microbubbles twice as much as applying aeration. It is thought that particulate foulants precipitated on the membrane surface were more likely to desorb because the adhesion between the membrane surface and particle was weakened by microbubbles. Therefore, it is considered possible to effectively control membrane fouling because of the increase in cleaning efficiency when applying microbubbles to wastewater reuse membrane processes.

입자수송시스템 내 공기-입자 유동장의 압력손실 특성 해석 (Analysis of Pressure Drop Characteristics for the Air-Particle Flow in Powder Transport Piping System)

  • 이재근;구재현;권순홍
    • 한국유체기계학회 논문집
    • /
    • 제5권1호
    • /
    • pp.20-26
    • /
    • 2002
  • This study reports the analysis of the pressure drop characteristics for the air-particle flow in powder transport piping system. The pressure drop characteristics of air-particle flow in piping system is not well understood due to the complexity of particles motion mechanism. Particles or powders suspended in air flow cause the increase of the pressure drop and affect directly the transportation efficiency. In this study, the pressure drop in powder transport piping system with straight and curved pipes is analyzed for the interactions of air flow and particle motion. The total pressure drop increases with increasing of the pipe length, the mixture ratio, and the friction factor of particles due to the increasing friction loss by air and particles in a coal piping system. For the coal powders of $74{\mu}m$ size and powder-to-air mass mixture ratio of 0.667, the total pressure drop by the consideration of powders and air flow is $30\%$ higher than that of air flow only.

간단한 손실모델을 이용한 단단축류압축기 탈설계점 성능예측 (Off-Design Performance Prediction of an Axial Flow Compressor Stage Using Simple Loss Correlations)

  • 김병남;정명균
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3357-3368
    • /
    • 1994
  • Total pressure losses required to calculate the total-to-total efficiency are estimated by integrating empirical loss coefficients of four loss mechanisms along the mean-line of blades as follows; blade profile loss, secondary flow loss, end wall loss and tip clearance loss. The off-design points are obtained on the basis of Howell's off-design performance of a compressor cascade. Also, inlet-outlet air angles and camber angle are obtained from semi-empirical relations of transonic airfoils' minimum loss incidence and deviation angles. And nominal point is replaced by the design point. It is concluded that relatively simple loss models and Howell's off-design data permit us to calculate the off-design performance with satisfactory accuracy. And this method can be easily extended for off-design performance prediction of multi-stage compressors.

초음속 공기유동으로의 연료 분사노즐 종횡비 변화에 대한 연소특성 연구 (Effects of Aspect Ratio of a Fuel Injection Nozzle into a Supersonic Air Stream on Combustion Characteristics)

  • 김경무;백승욱;김윤곤
    • 한국추진공학회지
    • /
    • 제8권1호
    • /
    • pp.44-53
    • /
    • 2004
  • 본 논문에서는 슬릿형 분사노즐의 출구 종횡비에 따라 3차원 화학반응 유동장을 수치적 계산을 통하여 그 특성을 조사하고 연소/혼합 촉진 방법을 고찰하였다. 내부유입유동과 슬릿측면 와동들 둘 다 혼합관점에서 고려되어야 한다는 것을 보여 주었다. 연소효율은 종횡비1.0을 기준으로 작은 경우가 낮고 압력손실 역시 종횡비가 작은 경우가 적다. 모든 결과들은 유동방향으로 긴 슬릿이 연소와 압력손실에 대해 바람직함을 나타내고 있다.

A Study on an Axial-Type 2-D Turbine Blade Shape for Reducing the Blade Profile Loss

  • Cho, Soo-Yong;Yoon, Eui-Soo;Park, Bum-Seog
    • Journal of Mechanical Science and Technology
    • /
    • 제16권8호
    • /
    • pp.1154-1164
    • /
    • 2002
  • Losses on the turbine consist of the mechanical loss, tip clearance loss, secondary flow loss and blade profile loss etc.,. More than 60 % of total losses on the turbine is generated by the two latter loss mechanisms. These losses are directly related with the reduction of turbine efficiency. In order to provide a new design methodology for reducing losses and increasing turbine efficiency, a two-dimensional axial-type turbine blade shape is modified by the optimization process with two-dimensional compressible flow analysis codes, which are validated by the experimental results on the VKI turbine blade. A turbine blade profile is selected at the mean radius of turbine rotor using on a heavy duty gas turbine, and optimized at the operating condition. Shape parameters, which are employed to change the blade shape, are applied as design variables in the optimization process. Aerodynamic, mechanical and geometric constraints are imposed to ensure that the optimized profile meets all engineering restrict conditions. The objective function is the pitchwise area averaged total pressure at the 30% axial chord downstream from the trailing edge. 13 design variables are chosen for blade shape modification. A 10.8 % reduction of total pressure loss on the turbine rotor is achieved by this process, which is same as a more than 1% total-to-total efficiency increase. The computed results are compared with those using 11 design variables, and show that optimized results depend heavily on the accuracy of blade design.

생활폐기물 자동집하시설용 다단직렬연결 원심블로어 운전특성 (Operating Characteristics of Serially Connected Centrifugal Blowers Used for Automated Vacuum Waste Collection System)

  • 장춘만;이종성
    • 한국유체기계학회 논문집
    • /
    • 제17권4호
    • /
    • pp.40-46
    • /
    • 2014
  • This paper describes blower performance characteristics of a automated vacuum waste collection system. Blowers serially connected to six or seven centrifugal blowers are evaluated by experimental measurements to understand blower performances according to blower numbers operated. Two different blowers and duct diameters connected to the main blowers are considered. Data acquisition system is introduced to measure pressure and pressure difference at the main duct simultaneously, which is connected to several blowers serially. A auxiliary blower, which is installed between a filter room and an air deodorizing apparatus, is also added to simulate its performance effect on the main blower. Throughout the experimental measurements of the blower system, it is found that pressure and inlet velocity at the upstream of a blower increase 3.7 and 2.4 times separately by increasing the operating blower numbers from one to seven. It is noted that blower efficiency and pressure measured at the system vary according to the distance between a air intake and a blower system. Auxiliary blower is effective to increase blower inlet suction pressure, while total energy consumption is increased relatively.