DOI QR코드

DOI QR Code

수평 배치된 분사구의 배치 간격에 따른 초음속 유동장 내 분사 유동의 침투 및 혼합 특성

Effect of the distance between the adjacent injectors on penetration and mixing characteristics of the jet in supersonic crossflow

  • Kim, Sei Hwan (Daewoo Shipbuilding & Marine Engineering Co., Ltd.) ;
  • Lee, Hyoung Jin (Department of Aerospace Engineeinrg, Inha University)
  • 투고 : 2018.07.31
  • 심사 : 2018.08.27
  • 발행 : 2018.08.31

초록

본 연구에서는 초음속 유동장 내 연료 분사시 연소기의 공간적인 제한 조건을 고려하여 복수의 분사기간 배치 간격을 변화시키고 그에 따른 유동 구조, 연료의 침투 거리 및 연료-공기의 혼합 특성을 비교 분석하였다. 이를 위하여 널리 알려진 단일 분사구를 이용한 실험 조건을 모사하여 적용된 수치 모델을 검토하였으며, 동일한 분사 조건을 갖는 복수의 분사기를 이용하여 비반응 유동 해석을 수행하였다. 해석 결과를 바탕으로 분사구 간 거리에 따라 전압력 손실, 침투 거리, 및 혼합 성능 등을 정량적으로 비교하였다. 해석 결과 분사구 간 배치 거리가 매우 짧은 경우 분사 연료가 서로 융합되면서 유동장이 2차원 특성을 나타내었고 전반적으로 낮은 혼합 효율 특성과 높은 전압력 손실을 발생하였다. 분사구 간 거리가 멀어짐에 따라 분사 가스간의 상호작용이 감소하면서 혼합 효율이 증가하고 전압력 손실이 낮아지는 것이 관찰되었다.

In the present study, a numerical investigation was conducted to analyze the effect of the distance between the adjacent injectors on the characteristics of flow structure, fuel penetration, and air/fuel mixing. Numerical results were validated with experimental data using a single injection. Subsequently, the same injector geometry and properties were applied on a non-reacting flow simulation with multiple injectors. Total pressure loss, penetration height, and mixing efficiency were compared with the distance between the injectors. The results showed that each injected gas merged into a single stream, resulting in the 2D-like flow fields under the condition of short distance and lower mixing efficiency along with higher total pressure loss. When the distance between the injectors increased, total pressure loss reduced and mixing efficiency increased due to the weakening of interactions between the injected gases.

키워드

참고문헌

  1. J. A. Schetz, S. Cox, and R. Fuller, "Integrated CFD and Experimental Studies of Complex Injectors in Supersonic Flows," 20th AIAA Advanced Measurement and Ground Testing Technology Conference, Albuquerque, NM, U.S.A., June 1998.
  2. L. S. Jacobsen, J. A. Schetz, and W. F. Ng, "Flowfield near a Multiport Injector Array in a Supersonic Flow," Journal of Propulsion and Power, vol. 16, no. 2, pp. 216-226, March 2000. https://doi.org/10.2514/2.5586
  3. A. Ben-Yakar, M. Kamel, C. Morris, and R. K. Hanson, "Experimental investigation of H2 transverse jet combustion in hypervelocity flows," 33rd Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences, Seattle, WA, U.S.A., AIAA 1997-3019, July. 1997.
  4. J. Santiago, and J. Dutton, "Crossflow Vortices of a Jet Injected into a Supersonic Crossflow," AIAA Journal, Vol. 35, No. 5, pp. 915-917, 1997. https://doi.org/10.2514/2.7468
  5. S. Aso, S. Okuyama, M. Kawai, and Y. Ando, "Experimental study on mixing phenomena in supersonic flows with slot injection," 29th Aerospace Sciences Meeting, Reno, NV, U.S.A., January 1991.
  6. A.D. Rothstein, and P. J. Wantruck, "A study of the normal injection of hydrogen into a heated supersonicflow using planar laser-induced fluorescence," 28th Joint Propulsion Conference and Exhibit, Nashville, TN, U.S.A., July 1992.
  7. J. C. McDaniel, and J. Graves, "Laser-induced-fluorescence visualization of transverse gaseous injection in a nonreacting supersonic combustor," Journal of Propulsion and Power, Vol. 4, No. 6, pp. 591-597, 1988. https://doi.org/10.2514/3.23105
  8. S. Tomioka, L. S. Jacobsen, and J. A. Schetz, "Sonic Injection from Diamond-Shaped Orifices into a Supersonic Crossflow," Journal of Propulsion and Power, Vol. 19, No. 1, pp. 104-114, 2003. https://doi.org/10.2514/2.6086
  9. A. Ben-Yakar, M. G. Mungal, and R. K. Hanson, "Time evolution and mixing characteristics of hydrogen and ethylene transverse jets in supersonic crossflows," Physics and Fluids, Vol. 18, No. 2, pp. 1-16, 2006.
  10. S. H. Won, I. S. Jeung, B. Parent, and J. Y. Choi, "Numerical investigation of transverse hydrogen jet into supersonic crossflow using detached-eddy simulation," AIAA Journal, Vol. 48, No. 6, pp. 1047-1058, 2010. https://doi.org/10.2514/1.41165
  11. R. C. Rogers, "Mixing of Hydrogen Injected from Multiple Injectors Normal to a Supersonic Airstream," NASA Technical Note, NASA-TN-D-6476, Sep. 1971
  12. M. B. Jun, J. Lei, H. Wu, J. Liang, W. Liu, and Z. Wang, "Flow patterns and mixing characteristics of gaeous fuel multiple injecions in a non-reacting supersonic combustor," Heat and Mass Transfer, Vol. 47, No. 11, pp. 1499-1516, 2011. https://doi.org/10.1007/s00231-011-0804-x
  13. M. Y. Ali, and F. Alvi, "Jet arrays in supersonic crossflow - An experimental study," Physics and Fluid, Vol. 27, No. 12, pp. 1-30, 2015.
  14. K. Mahesh, "The Interaction of Jets with Crossflow," Annual Review of Fluid Mechanics, Vol, 45, pp. 379-407, 2013. https://doi.org/10.1146/annurev-fluid-120710-101115
  15. L. Zhang, and V. Yang, "Flow Dynamics and Mixing of a Transverse Jet in Crossflow - Part I:Steady Crossflow," Journal of Engineering for Gas Turbines and Power, Vol. 139, No. 8, pp. 1-14, 2017.
  16. S. H. Won, I. S. Jeung, and J. Y. Choi, "Verification and Validation of the Numerical Simulation of Transverse Injection Jets using Grid Convergence Index," Journal of The Korean Society for Aeronautical & Space Sciences, Vol. 34, No. 4, pp. 53-62, 2006. https://doi.org/10.5139/JKSAS.2006.34.4.053
  17. S. H. Kim, B. J. Lee, I. S. Jeung, and H. J. Lee, "Characteristics of the Transverse Fuel Injection into a Supersonic Crossflow using Various Injector Geometry," Journal of The Korean Society of Propulsion Engineers, Vol. 22, No. 3, pp. 53-64, 2018. https://doi.org/10.6108/KSPE.2018.22.3.053
  18. M. P. Burke, M. Chaos, Y. Ju, F. L. Dryer, and S. J. Klippenstein, "Comprehensive H2/O2 Kinetic Model for High-Pressure Combustion," International Journal of Chemical Kinetics, Vol. 44, No. 7, pp. 444-474, 2011. https://doi.org/10.1002/kin.20603