• 제목/요약/키워드: Total petroleum Hydrocarbon (TPH)

검색결과 80건 처리시간 0.027초

석유계 총 탄화수소(Total Petroleum Hydrocarbons, TPH) 분획분석법을 이용한 지하수 중 유류오염물질 분포특성 평가 (Evaluation of Distribution Characteristics for Petroleum Hydrocarbon in Groundwater by TPH Fraction Analysis)

  • 김덕현;박선화;최민영;김문수;윤종현;이경미;전상호;송다희;김영;정현미;김현구
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제23권5호
    • /
    • pp.26-36
    • /
    • 2018
  • Total petroleum hydrocarbon (TPH) is a mixture of various oil substances composed of alkane, alkene, cycloalkane, and aromatic hydrocarbons (benzene, toluene, ethylbenzene, xylene, etc.). In this study, we investigated 92 groundwater wells around 36 gas stations to evaluate distribution characteristics of petroleum hydrocarbons. Groundwater in the wells was sampled and monitored twice a year. The fraction analysis method of TPH was developed based on TNRCC 1006. The test results indicated aliphatic and aromatic fractions accounted for 28.6 and 73.8%, respectively. The detection frequencies of TPH in the monitoring wells ranged in 21.6 - 24.2%. The average concentration of TPH was 0.11 mg/L with the concentration range of 0.25~0.99 mg/L. In the result of TPH fraction analysis, in aliphatic fractions were 19% (C6-C8 : 0.2%, C8-C10 : 0.4%, C10-C12 : 0.4%, C12-C16 : 0.5%, C16-C22 : 1.0%, C22-C36 : 16.6%), and aromatic fractions were 81% (C6-C8 : 1.1%, C8-C10 : 0%, C10-C12 : 2.9%, C12-C16 : 0.3%, C16-C22 : 4%, C22-C36 : 66.8%). Fractions of C22-C36 were detected in about 83% of the monitoring wells, suggesting non-degradable characteristics of hydrocarbons with high carbon content.

마이크로파 조사와 발열체를 이용한 벙커C유 오염토양의 복원 (Remediation of Bunker Fuel Oil C Contaminated Soil with Microwave Radiation and Heating Elements)

  • 오다경;이태진
    • 대한환경공학회지
    • /
    • 제37권8호
    • /
    • pp.458-464
    • /
    • 2015
  • 본 연구에서는 사산화삼철과 활성탄을 발열체로 하여 벙커C유 오염토양에 마이크로파를 조사한 후 온도변화 양상 및 TPH 제거효율을 살펴보았다. 사산화삼철 및 활성탄 함유 오염토양에 100~500 Watt로 마이크로파를 조사하였을 때 승온율은 $1.4{\sim}1.6^{\circ}C/Watt$로 나타났다. 조사시간에 따른 온도의 변화는 활성탄보다 사산화삼철 함유토양에서 민감하게 나타났으며, 사산화삼철과 활성탄의 경우 발열체 함량이 각각 10% 이상과 25%에서 열탈착을 위한 충분한 온도가 확보될 수 있음을 관찰하였다. 사산화삼철은 평균 44.1%, 활성탄은 평균 89.4%의 TPH 제거 효율을 나타났으며, 벙커C유의 제거 양상은 활성탄이 함유되었을 때 사산화삼철 보다 고분자탄화수소의 휘발이 더욱 원활하게 진행되고 있음을 확인하였다.

오염토양내 석유계 총탄화수소 분석을 위한 추출방법의 비교 (Comparison of Extraction Methods for the Analysis of Total Petroleum Hydrocarbons in Contaminated Soil)

  • Eui-Young Hwang;Wan Namkoong;Jung-Young Choi
    • 한국토양환경학회지
    • /
    • 제5권2호
    • /
    • pp.45-53
    • /
    • 2000
  • 본 연구에서는 오염토양내 석유계 총탄화수소를 분석하기 위한 추출방법을 비교하였다. 사용된 토양은 사질양토였으며 석유계 총탄화수소로는 디젤오일을 선정하였다. 토양내 디젤오일의 오염농도는 건조질량기준으로 100, 10,000, 50,000mgTPH/kg이었다. 오염토양내 석유계 총탄화수소를 추출하는데 있어서 진탕교반에 의한 추출법이 속시렛장치를 이용한 추출법보다 전반적으로 높은 회수율을 보였다. 진탕교반추출법에서 시료와 용매의 비율을 1 : 5(w/v)로 하여 2시간 동안 진탕교반하였을 때 석유계 총탄화수소의 회수율이 가장 높았다. 동일조건에서 100mg/kg과 50,000mg/kg으로 오염된 토양을 진탕교반추출한 경우 각각 95.9%와 95.5%의 회수율을 보였다. 사용된 용매의 손실량을 측정해 본 결과 진탕추출법이 속시렛추출법에서 보다 손실량이 적었다.

  • PDF

${H_2}{O_2}$/$Fe^0시스템을 이용한 유류오염 미세토양의 화학적 산화처리 (Chemical Oxidation Treatment of Hydrocarbon-Contaminated Eine Soil by ${H_2}{O_2}$/$Fe^0 System)

  • 지원현;김지형;강정우;김성용;장윤영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제6권3호
    • /
    • pp.13-20
    • /
    • 2001
  • 본 연구에서는 고농도 유류오염토양 처리를 위해 ${H_2}{O_2}$/$Fe^0 시스템을 이용한 Fenton-like oxidation을 제시하였다. 주요 반응조건인 초기 PH, $Fe^0${H_2}{O_2}$ 주입량과 초기 오염농도를 변화시켜가며 본 산화처리 시스템의 반응특성을 회분식 실험을 통하여 알아보았다. 유류 오염물은 디젤을 사용하였으며 오염농도는 가스 크로마토그래피를 사용하여 TPH (Total Petroleum Hydrocarbon)로 나타내었다. 제거효율을 보면 적정 ${H_2}{O_2}$/$Fe^0 주입조건인 10% ${H_2}{O_2}$+ 20% Fe$^{0}$ 에서 반응시간 24이내에 약 65% 이상의 제거율(초기 TPH 농도 : 10,000mg/kg)을 나타내었으며, 초기 pH조건은 높은 제거효과를 얻기 위해서 3~4범위이내가 적정함을 알 수 있었다. 기존의 과산화수소의 분해촉매로 사용하는 철 염($FeSO_4)과의 비교실험에서는 $Fe^0를 촉매로 사용하였을 때 유류오염토양의 화학적 산화 처리가 처리효율과 경제성에서 더 효과적임을 알 수 있었고, 특히 고농도 오염토양 처리에서 더 유리한 것으로 나타났다.

  • PDF

Monitoring of petroleum hydrocarbon degradative potential of indigenous microorganisms in ozonated soil

  • 안영희;정해룡;;;최희철;김인수
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.152-157
    • /
    • 2003
  • Diesel-contaminated soils were ozonated for different times (0 - 900 min) and incubated for 9 wk to monitor petroleum hydrocarbons (PH)-degradative potential of indigenous microorganisms in the soils. Increased ozonation time decreased not only concentration of PH but also number of microorganisms in the soils. Microorganisms in the ozonated soils increased during 9-wk incubation as monitored by culture- and nonculture-based methods. Higher (1-2 orders of magnitude) cell number was observed by quantitative analysis of soil DNA using probes detecting genes encoding 165 rRNA(rrn), naphthalene dioxygenase (nahA), toluene dioxygenase (todC), and alkane hydroxylase (alkB) than microbial abundance estimated by culture-based methods. Such PH-degraders were relatively a few or under detection limit in 900-min ozonated soil. Further PH-removal observed during the incubation period supported the presence of PH-degraders in ozonated soils. Highest reduction (25.4%) of total PH (TPH) was observed in 180-min ozonated soil white negligible reduction was shown in 900-min ozonated soil during the period, resulting in lowest TPH-concentration in 180-min ozonated soil among the ozonated soils. Microbial community composition in 9-wk incubated soils revealed slight difference between 900-min ozonated and unozonated soils as analyzed by whole cell hybridization using group-specific rRNA-targeted oligonucleotides. Results of this study suggest that appropriate ozonation and subsequent biodegradation by indigenous microorganisms may be a cost-effective and successful remediation strategy for PH-contaminated soils.

  • PDF

간접열탈착방식을 이용한 원유오염토양 정화효율 평가 (The Study of Crude Oil Contaminated Soil Remediation by Indirect Thermal Desorption)

  • 이인;김종성;정태양;오승택;김국진
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권3호
    • /
    • pp.14-20
    • /
    • 2016
  • Remediation of crude oil contaminated soil is complicate and hard to apply traditional methods because of its persistency, durability, and high viscosity. Therefore, in this study, the efficiency of crude oil contaminated soil remediation was tested by developing a pilot-scale thermal desorption system using the indirect heating method with an exhaust gas treatment. Under optimal condition drawed by temperature and retention time, the remedial efficiency of crude oil contaminated soil and treatability of exhaust gas were analyzed. Total Petroleum Hydrocarbon (TPH) concentration of crude oil contaminated soil was decreased to 69.7 mg/kg on average and the remedial efficiency was measured at 99.60%. Through the exhaust gas, 86.0% of Volatile Organic Compounds (VOC) was degraded and 97.16% of complex malodor was reduced under the suggested optimum operation condition. This study provides important basic data to be useful in scaling up of the indirect thermal desorption system for the remediation of crude oil contaminated soil.

Enhanced Biodegradation of Total Petroleum Hydrocarbons (TPHs) in Contaminated Soil using Biocatalyst

  • Owen, Jeffrey S.;Pyo, Sunyeon;Kang, Guyoung
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권5호
    • /
    • pp.47-51
    • /
    • 2015
  • Biocatalytic degradation of total petroleum hydrocarbons (TPHs) in contaminated soil by hemoglobin and hydrogen peroxide is an effective soil remediation method. This study used a laboratory soil reactor experiment to evaluate the effectiveness of a nonspecific biocatalytic reaction with hemoglobin and H2O2 for treating TPH-contaminated soil. We also quantified changes in the soil microbial community using real-time PCR analysis during the experimental treatment. The results show that the measured rate constant for the reaction with added hemoglobin was 0.051/day, about 3.5 times higher than the constant for the reaction with only H2O2 (0.014/day). After four weeks of treatment, 76% of the initial soil TPH concentration was removed with hemoglobin and hydrogen peroxide treatment. The removal of initial soil TPH concentration was 26% when only hydrogen peroxide was used. The soil microbial community, based on 16S rRNA gene copy number, was higher (7.1 × 106 copy number/g of bacteria, and 7.4 × 105 copy number/g of Archaea, respectively) in the hemoglobin catalyzed treatment. Our results show that TPH treatment in contaminated soil using hemoglobin catalyzed oxidation led to the enhanced removal effectiveness and was non-toxic to the native soil microbial community in the initial soil.

Optimization of nutrients requirements for bioremediation of spent-engine oil contaminated soils

  • Ogbeh, Gabriel O.;Tsokar, Titus O.;Salifu, Emmanuel
    • Environmental Engineering Research
    • /
    • 제24권3호
    • /
    • pp.484-494
    • /
    • 2019
  • This paper presents a preliminary investigation of the optimum nutrients combination required for bioremediation of spent-engine oil contaminated soil using Box-Behnken-Design. Three levels of cow-manure, poultry-manure and inorganic nitrogen-phosphorus-potassium (NPK) fertilizer were used as independent biostimulants variables; while reduction in total petroleum hydrocarbon (TPH) and total soil porosity (TSP) response as dependent variables were monitored under 6-week incubation. Ex-situ data generated in assessing the degree of biodegradation in the soil were used to develop second-order quadratic regression models for both TPH and TSP. The two models were found to be highly significant and good predictors of the response fate of TPH-removal and TSP-improvement, as indicated by their coefficients of determination: $R^2=0.9982$ and $R^2=1.000$ at $p{\leq}0.05$, respectively. Validation of the models showed that there was no significant difference between the predicted and observed values of TPH-removal and TSP-improvement. Using numerical technique, the optimum values of the biostimulants required to achieve a predicted maximum TPH-removal and TSP-improvement of 67.20 and 53.42%-dry-weight per kg of the contaminated soil were as follows: cow-manure - 125.0 g, poultry-manure - 100.0 g and NPK-fertilizer - 10.5 g. The observed values at this optimum point were 66.92 and 52.65%-dry-weight as TPH-removal and TSP-improvement, respectively.

원유오염농도와 미생물 농도가 탄화수소의 생분해에 미치는 영향 (Effects of Oil Contamination Levels and Microbial Size on Hydrocarbon Biodegradation.)

  • 백경화;김희식;이인숙;오희목;윤병대
    • 한국미생물·생명공학회지
    • /
    • 제31권4호
    • /
    • pp.408-412
    • /
    • 2003
  • 오염토양에 유류분해능을 가진 Nocardia sp. H17-1의 접종시 고려되어야 할 인자중 하나인 초기 오염농도에 의한 탄화수소분해능과 초기 접종농도에 의한 분해능 및 균주의 생육을 조사하였다. H17-1은 실험 50일 동안 초기 오염농도 10, 50, 100 g Arabian light oil/kg of soil에 대해 각각 78.5%, 94.3%, 53.2%의 탄화수소를 제거하였으며, 오염농도가 높을수록 분해속도 상수(k) 낮아졌다. $CO_2$의 생성량 또한 오염농도가 높을수록 증가하였으나, 100 g/kg-soil의 오염농도에서는 균의 생육이 저해를 받는 것으로 나타났다. H17-1의 초기 접종농도에 의한 영향은 균의 접종량에 따라 최종 남은 TPH의 양은 큰 차이를 나타내지 않았으나, 분해속도상수(k)는 균의 접종량이 늘어남에 따라 크게 증가되었으며, $CO_2$의 생성량 또한 균의 접종농도에 따라 증가하였다.

유류오염토양의 정화기술과 적용사례 (Remediation Technology and application case of petroleum hydrocarbon contaminated soil)

  • 이철효
    • 기술사
    • /
    • 제41권3호
    • /
    • pp.35-39
    • /
    • 2008
  • The most common soil contaminants are petroleum-based. Hydrocarbons from diesel fuel and gasoline are widespread problems, as are total petroleum hydrocarbon(TPH). There are two distinct classes of soil remediation: in-situ, or on-site, and ex-situ, or off- site. On-site cleanups are often preferred because they are cheaper. On the other hand, excavating a contaminated area and transporting it to a remote site before cleaning it can often be more complete. Ex-situ remediation also has the added bonus of taking the bulk of contaminants off-site before they can spread further. In addition, in-situ situations are limited because only the topside of the soil is accessible.

  • PDF