• Title/Summary/Keyword: Total flow velocity

Search Result 382, Processing Time 0.021 seconds

The Flow Characteristics in Dividing Ducts (분지덕트 내의 유동특성)

  • Lee, Haeng-Nam;Park, Gil-Moon;Lee, Duck-Gu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.4 s.17
    • /
    • pp.19-25
    • /
    • 2002
  • The flow characteristics in a bifurcated duct are investigated experimentally. Physical properties such as mean velocity vectors, mean vorticity, and total pressure distributions are obtained for three different Reynolds numbers (578, 620, 688) using PIV measurements and CFD analysis. Also, two different dividing ducts ($90^{\circ},\;60^{\circ}$) were selected for study. The results of this study would be useful to the engineers designing flow systems for heating, ventilation, air conditioning and waste-water purification plants.

A Study on Flow Characteristics in a PCV valve according to Various Differential Pressures (차압에 따른 PCV 밸브 유동 특성에 관한 연구)

  • Lee, Jong-Hoon;Lee, Yeon-Won;Kim, Jae-Hwan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.230-231
    • /
    • 2005
  • As environmental problems are important, automotive industries are developing various techniques to prevent air pollution. One of these is Positive Crankcase Ventilation (PCV) system. It removes blowby gas which includes about 30% hydrocarbon of total generated quantity. In this system, a PCV valve is attached in a manifold suction tube to control the flow rate of blowby gas which generates differently according to various operating conditions of an automotive engine. As this valve is very important, designers are feeling to design it because of both small size and high velocity. For this reason, we numerically investigated to understand both spool dynamic motion and internal fluid flow characteristics. As the results, spool dynamic characteristics, i.e. displacement, velocity, acting force, increase in direct proportion to the magnitude of differential pressure and indicate periodic oscillating motions. And, the velocity at the orifice region decreases according to the increase of differential pressure because of energy loss which is caused by the sudden decrease of flow area at the orifice region and the increase of flow volume in the front of spool head. Finally, the mass flow rate at the outlet decreases with the increase of spool displacement. We expect that PCV valve designers can easily understand fluid flow inside a PCV valve with our visual information for their help.

  • PDF

Effects of bee venom acupuncture on heart rate variability, pulse wave, and cerebral blood flow for types of Sasang Constitution (봉약침 자극이 사상체질별 건강인의 심박변이도, 맥파, 뇌혈류에 미치는 영향)

  • Lee, Sang-Min;Kim, Koo;Oh, Seung-Yun;Kwon, Young-Mi;Joo, Jong-Cheon
    • Journal of Pharmacopuncture
    • /
    • v.12 no.1
    • /
    • pp.35-42
    • /
    • 2009
  • 1. Objectives To evaluate effects of bee venom acupuncture on cardiovascular system and differences according to each constitution. 2. Methods Heart rate variability, pulse wave and the velocity of cerebral blood flow were measured before bee venom acupuncture(BVA), right after and after 30 minuets, had been applied to 20 subjects. 3. Results 1. BVA did not have effects on measurement variables of heart rate variability. 2. BVA had effects on pulse wave, showing total time, radial augmentation index up and height of percussion wave, time to percussion wave, sum of pulse pressure down. 3. BVA did not have effects on the cerebral blood flow velocity when considering not Sasang Constitution. 4. Considering Sasang Constitution, BVA demonstrates different responses in time to preincisura wave, mean blood flow velocity, peak systolic velocity and end diastolic velocity. 4.Conclusion From those results, the following conclusions are obtained. Cause BVA alters pulse wave and makes differences in the cerebral blood flow velocity according to Sasang Constitution. Various methods of BVA treatment are needed considering Sasang Constitution.

Research on Acceleration Mechanism of Inflight Particle and Gas Flow Effect for the Velocity Control in Vacuum Kinetic Spray Process (진공상온분사(VKS) 공정에서의 비행입자 가속 기구 및 속도제어를 위한 가스 유량 효과에 관한 연구)

  • Park, Hyungkwon;Kwon, Juhyuk;Lee, Illjoo;Lee, Changhee
    • Korean Journal of Materials Research
    • /
    • v.24 no.2
    • /
    • pp.98-104
    • /
    • 2014
  • Vacuum kinetic spray(VKS) is a relatively advanced process for fabricating thin/thick and dense ceramic coatings via submicron-sized particle impact at room temperature. However, unfortunately, the particle velocity, which is an important value for investigating the deposition mechanism, has not been clarified yet. Thus, in this research, VKS average particle velocities were derived by numerical analysis method(CFD: computational fluid dynamics) connected with an experimental approach(SCM: slit cell method). When the process gas or powder particles are accelerated by a compressive force generated by gas pressure in kinetic spraying, a tensile force generated by the vacuum in the VKS system accelerates the process gas. As a result, the gas is able to reach supersonic speed even though only 0.6MPa gas pressure is used in VKS. In addition, small size powders can be accelerated up to supersonic velocity by means of the drag-force of the low pressure process gas flow. Furthermore, in this process, the increase of gas flow makes the drag-force stronger and gas distribution more homogenized in the pipe, by which the total particle average velocity becomes higher and the difference between max. and min. particle velocity decreases. Consequently, the control of particle size and gas flow rate are important factors in making the velocity of particles high enough for successful deposition in the VKS system.

The characteristics of static pressure recovery in a conical diffuser with a swirling flow (선회류 유입에 대한 원추디퓨저의 정압회복 특성)

  • Jeong, Hyo-Min;Jeong, Han-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.937-945
    • /
    • 1998
  • The purpose of this paper is to investigate the relationship between pressure recovery and turbulent characteristic value of velocity and pressure, in the case where a swirling flow streams into a conical diffuser. The results of both measurements of the wall pressure fluctuation and velocity fluctuation revealed them to role the large part of the total pressure loss of the flow. The cause of the fluctuation of flow was showed to be the flow separation at the inlet of diffuser at low intensity of swirl, but the flow of diffuser center was instable at high intensity of swirl. The static pressure recovery depends strongly on the magnitude of the turbulent energy in the diffuser, and that this magnitude of the turbulent energy varies as the intensity of swirl at the diffuser inlet.

A Study on the Selection of Dependent Variables of Momentum Equations in the General Curvilinear Coordinate System for Computational Fluid Dynamics (전산유체역학을 위한 일반 곡률좌표계에서 운동량 방정식의 종속변수 선정에 관한 연구)

  • Kim, Won-Kap;Choi, Young Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.198-209
    • /
    • 1999
  • This study reports the selection of dependent variables for momentum equations in general curvilinear coordinates. Catesian, covariant and contravariant velocity components were examined for the dependent variable. The focus of present study is confined to staggered grid system Each dependent variable selected for momentum equations are tested for several flow fields. Results show that the selection of Cartesian and covariant velocity components intrinsically can not satisfy mass conservation of control volume unless additional converting processes ore used. Also, Cartesian component can only be used for the flow field in which main-flow direction does not change significantly. Convergence rate for the selection of covariant velocity component decreases quickly as with the increase of non-orthogonality of grid system. But the selection of contravariant velocity component reduces the total mass residual of discretized equations rapidly to the limit of machine accuracy and the solutions are insensitive to the main-flow direction.

A Study on the Ram Accelerator Performance Improvement Using Numerical Optimization Techniques (수치 최적화 기법을 이용한 램 가속기 성능 향상 연구)

  • Jeon Yong-Hee;Lee Jae-Woo;Byun Yung-Hwan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.77-84
    • /
    • 1999
  • Numerical design optimization techniques are implemented for the improvement of the ram accelerator performance. The design object is to find the minimum ram tube length required to accelerate projectile from initial velocity $V_0$ to target velocity $V_e$. The premixture is composed of $H_2,\;O_2,\;N_2$ and the mole numbers of these species are selected as design variables. The objective function and the constraints are linearized during the optimization process and gradient-based Simplex method and SLP(Sequential Linear Programming) have been employed. With the assumption of two dimensional inviscid flow for internal flow field, the analyses of the nonequilibrium chemical reactions for 8 steps 7 species lave been performed. To determined the tube length, ram tube internal flow field is assumed to be in a quasi-steady state and the flow velocity is divided into several subregions with equal interval. Hence the thrust coefficients and accelerations for corresponding subregions are obtained and integrated for the whole velocity region. With the proposed design optimization techniques, the total ram tube length had been reduced $19\%$ within 7 design iterations. This optimization procedure can be directly applied to the multi-stage, multi-premixture ram accelerator design optimization problems.

  • PDF

Flow Characteristics Analyses within the Electrolysis Reactor using the CFD Simulation Technique (CFD 모사 기법을 이용한 전해반응기 내부 흐름 특성 분석)

  • Jeong, Jongsik;Lee, Seungjae;Lee, Jaebok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.745-753
    • /
    • 2016
  • The objective of this study was to investigate design factors of the electrolysis reactor through the CFD(computational fluid dynamics) simulation technique. Analyses of velocity vector, streamline, chloride ion concentration distribution showed differences in flow characteristics between the plate type electrode and the porous plate type electrode. In case of the porous plate type electrode, chlorine gas bubbles generated from the anode made upward density flow with relatively constant velocity vectors. Electrolysis effect was more expected with the porous plate type electrode from the distribution of chloride ion concentration. The upper part of the electrolysis reactor with the porous plate type electrode had comparatively low chloride concentration because chloride was converted to the chlorine gas formation. Decreasing the size and increasing total area of rectifying holes in the upper part of cathodes, and widening the area of the rectifying holes in the lower part of cathodes could improve the circulation flow and the efficiency of electrolysis reactor.

Flow Characteristics for the Variation of Total Angles in Open Channel Bends (개수로 만곡부에서의 중심각 변화에 따른 흐름특성)

  • Lee, Jong Tae;Yoon, Sei Eui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.195-202
    • /
    • 1987
  • The flow characteristics in the shallow open channel bends are investigated, whose total angles were 30, 60, 90, 120, 150 and 180 in degree, and whose bed frictions were relatively rough(C=30) and smooth(C=60), respectively. The terms analyzed in this study are the water surface profile, the distribution of velocity and the flow direction, relating to the various total angles in the bends. The maximum depth in the bends could be found at the outside section of the location of $15^{\circ}$ local angle from the bend inlet, having no relation to the total angle and bed friction. It is supposed that the path of maximum velocities is especially influenced by the bottom friction when the total angles are bigger than 150 in degree, approximately. The ratio of the superelevation to the velocity head seems to increase as the total angle of the bends increases. The flow direction is skewed to the inner side at the bend inlet, and skewed to the outside at the bend outlet, regardless of their total angles.

  • PDF

Comparison of Tangential and Axial Flow Cyclones for Small Dust Collectors (소형 집진기용 접선식 및 축류식 사이클론 성능비교)

  • Lee, Sungwon;Lee, Chungmin;Yoon, Jong-Hwan
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.2
    • /
    • pp.45-52
    • /
    • 2018
  • The tangential and axial cyclones were fabricated using a 3D printer and the total collecting efficiency, cut-diameter, and pressure drop characteristics of the two types of cyclones with the same inlet area were investigated experimentally. The results show that the total collecting efficiency tends to increase as the inlet velocity increases. However, at a 20m/s condition of the tangential cyclone, the collected particles were re-entrained to the ascending vortex flow, resulting in a decrease of the total collecting efficiency. In the axial cyclone, the cross-sectional area is designed to increase at the inlet and the velocity is reduced, so that the re-entrainment effect does not appear in this study. The pressure loss of the tangential cyclone was larger than that of the axial cyclone. The cut-diameter tends to decrease with increasing the inlet velocity in two types of cyclones, except for the 20m/s condition of the tangential cyclone.