• Title/Summary/Keyword: Total expected cost function

Search Result 47, Processing Time 0.026 seconds

A Process Mean Shift Model Considering The Increasing Maintenance Cost and The Decreasing Production Volume (보전비용 증가와 생산량 감소를 고려한 공정평균이동 모형)

  • Lee, Do-Kyung
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.3
    • /
    • pp.125-131
    • /
    • 2021
  • The problem of determining the maintenance point which minimizes the process-related total cost is called the 'process mean shift problem'. By expanding and integrating the existing maintenance models that have been partially progressed, we present a expanded and integrated maintenance model which reflects the production site where various situations occur. To implement this, we set both the upper and lower limits of the product specification, and adopted the quality loss function for conforming items. Also, we set the process variance of the wear level as a function rather than a constant. In this study, we developed two general functions to the wear level. One is about the production volume and the other is maintenance cost. As a result, this study is expected to be a maintenance model that can be applied to various processes. In the future, this study can be developed as a profit maximization model by adding profit items from product sales, and expansion to a maintenance model that introduces failure to the model of this study can be considered.

Optimal Release Policies of Software System with Scheduled Delivery Time (예정된 인도시기를 가진 Software시스템의 최적방출정책)

  • 정영배;신현재
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.9 no.13
    • /
    • pp.29-32
    • /
    • 1986
  • A decision procedure to determine when computer software should be released after testing is described. This paper extends optimum release policies minimizing the total expected software cost with a scheduled software delivery time under reliability requirement constraint. Such cost considerations enable us to make a release decision as to when transfer a software system from testing phase to operational phase. The underlying model is software reliability growth model described by a nonhomogeneous poisson process. It is assumed that the penalty cost function due to delay for a scheduled software delivery time is linearly proportional to time. Numerical examples are shown to illustrate the results.

  • PDF

A Periodic Replacement Model with Random Repair Costs and Threshold Levels (확률적 수리비용과 임계수준을 고려한 주기적 교체 모형에 관한 연구)

  • Gang Yeong-Gil;Gang Seong-Jin
    • Journal of the military operations research society of Korea
    • /
    • v.18 no.2
    • /
    • pp.114-125
    • /
    • 1992
  • A policy of periodic replacement with minimal repair at failure is considered for a complex system. Under such a policy the system is replaced at periodic times. iT(i=1,2, $\ldots$), while minimal repair is performed at any intervening system failures. The cost of the j-th minimal repair to the component which fails at age t is g(C(t). $c_j$ (t)), where C(t) is the age-dependent random part, $c_j$(t) is the deterministic part which depends on the age and the number of the minimal repair to the component, and g is a positive nondecreasing continuous function. The cost of replacement is expensive when the number of failures occurring in (0. T) is greater than a threshold level. The problem of determining the optimal replacement period, $T^{\ast}$, which minimizes the total expected cost per unit time over an infinite time horizon is considered. Various special cases are considered.

  • PDF

A Study on Optimal Lead Time Selection Measures of the Construction Materials (건설자재의 적정 리드타임 산정에 관한 연구)

  • Lee, Sang-Beom
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.1
    • /
    • pp.105-110
    • /
    • 2004
  • Resource procurement is an important management area because cost of resource covers 40% of total construction project cost and resource delivery has direct relationship with project performance. Integration of cost provides various potentials for effective and efficient project control. This study investigates the usefulness of time in resource procurement management focused on materials. These days, construction projects have characterized manufacture because of industrialization and component. Therefore, application of systematic resource planning has been requested in the construction. There are many companies conducting procurement of resource on the web by applying MRP, ERP etc. in the construction. However, in applying them in the construction yet, there is obstruction. MRP has the character doing its function under accurate cost prediction of resource. But prediction of resource is difficult in industry mechanism of the construction. If accurate cost prediction of resource is possible in the construction, it will be expected to reduce cost of procurement of resource substantially by applying successful resource planning model in the manufacture. On the basis of recent current, the purpose of study is to present procurement of resource system that period observance of construction and minimization of stock is possible by reflecting accurate lead-time to apply proactive thought to be able to cope with alteration of construction schedule efficiently in analyzing resource planning of the construction site.

Determination of Optimal Replacement Period for A Multicomponent System Consider with Failure Types (고장형태(故障形態)를 고려(考慮)한 다부품장비(多部品裝備)의 최적교환시기(最適交換時期) 결정(決定))

  • Lee, Seung-Jun;Gang, Chang-Uk;Hwang, Ui-Cheol
    • Journal of Korean Society for Quality Management
    • /
    • v.19 no.2
    • /
    • pp.117-124
    • /
    • 1991
  • In this paper, it is assumed that a system is composed of an essential unit and a nonessential unit. During the running of the system, an essential unit is replaced at periodic replacement time T or at nth failure of essential unit whichever occurs first. Nonessential unit is replaced at its failure and at the replacement of essential unit. This paper derive optimal replacement period which minmises the total expected cost for replacement. The unimodality of totoal maintenance cost function is proved under the assumption that hazard rate of each component is continuous and monotone increasing failure rate(IFR). Based on this condition, it is shown that the optimal replacement period is finite and unique.

  • PDF

Handoff QoS guarnatee on ATM-based wired/wireless integrated network (ATM기반 유무선 통합망에서 이동성으로 인한 핸드오프 QoS보장 방안)

  • 장경훈;강경훈;심재정;김덕진
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.10
    • /
    • pp.33-51
    • /
    • 1997
  • On ATM-based wired/wireless integrated network, we apply the connection re-routing method[1] which reduced the inter-cluster handoff delay by reserving VPI/VCLs for possible inter-cluster handoff calls in advance. Additionally, we propose wired resource reservation methods, which are ausiliary method and split method, for handoff QoS guarantee of various expected services. The characteristics of these methods reserve wired connection resources based on the information on the possible inter-cluster handoff calls. With mathematical analysis, we also propose each algorithm and cost function for deciding an optimal amount in reserving resources. With numberical examples, we can see that the auxiliary method effectively reduces the cost in all cases(.alpha.>.betha., .alpha.=.betha., and .alpha.<.betha.). The split method has a little cost-reduction effects, when handoffs call does not have priority over new calls (that is, .alpha..leq..betha.) and the total capacity is relatively large. In other cases, the split method, however, has effective cost-reduction effects. The numerical resutls show that these reservation methods ca flexibly cope with the time-variant environment and meet the QoS requriements on the inter-cluster handoff calls.

  • PDF

OPPORTUNISTIC REPLACEMENT POLICIES UNDER MARKOVIAN DETERIORATION

  • Chang Ki-Duck;Tcha Dong-Wan
    • Journal of the military operations research society of Korea
    • /
    • v.4 no.1
    • /
    • pp.113-123
    • /
    • 1978
  • Consider a series system of two units, named 1 and 2, respectively. Two units are observed at the beginning of discrete time periods t=0,1,2, $cdots$ and classified as being in one of a countable number of states. Let (i, r) be a state of the system at time t, when the state of unit 1 is i and state of unit 2 is r at time t, Under some conditions, the opportunistic replacement policy that minimizes the expected total discounted cost or the average cost of maintenance is shown to be characterized by the control limits $i^{*}(r)$ (a function of r) and $r^{*}(i)$ (a function of i) : (a) in observed state (i, r), the optimal policy for unit 1 is to replace if $i{\ge}i^{*}(r)$ and no action otherwise; (b) in observed state (i, r), the optimal policy for unit 2 is to replace if $r{\ge}r^{*}(i)$ and no action otherwise. In addition, this paper also develops optimal policy in the finite time horizon case, where time horizon is fixed or a finite integer valued r.v. with known pmf.

  • PDF

An Optimal Ordering policy on Both Way Substitutable Two-Commodity Inventory Control System

  • Tanaka, Masatoshi;Yoshikawa, Shin-ichi;Tabata, Yoshio
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.2
    • /
    • pp.145-157
    • /
    • 2005
  • There are a lot of raw materials, work-in-processes and finished goods in manufacturing industry. Here, the less stock of materials and work-in-processes manufacturing industry has, the worse the rate of the production is. Inversely, the more manufacturing industry has, the more expensive the cost to support them is. Thus, it is important for us to balance them efficiently. In general, inventory problems are to decide appropriate times to produce goods and to determine appropriate quantities of goods. Therefore, inventory problems require as more useful information as possible. For example, there are demand, lead time, ordering point and so on. In this paper, we deal with an optimal ordering policy on both way substitutable two-commodity inventory control system. That is, there is a problem of how to allocate the produced two kinds of goods in a factory to m areas so as to minimize the total expected inventory cost. The demand of each area is probabilistic, and we adopt the exponential distribution as a probability density function of demand. Moreover, we provide numerical examples of the problem.

Optimum Maintenance and Retrofit Planning for Reliable Seismic Performance of the Bridges (내진성능확보를 위한 교량의 최적유지보수계획법)

  • 고현무;이선영;박관순;김동석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.5
    • /
    • pp.29-36
    • /
    • 2002
  • In the maintenance and retrofit planning of a bridge system, the optimal strategy for inspection and repair are suggested by minimizing the expected total life-cycle cost, which includes the initial cost, the costs of inspection, repair, and failure. Degradation of seismic performance is modeled by using a damage function. And failure probability is computed according to the degree of damage detection by random vibration theory and the event tree analysis. As an example to illustrate the proposed approach, a 10-span continuous bridge structure is used. The numerical results show that the optimum number of the inspection and the repair are increased, as the seismic intensity is increased and the soil condition of a site becomes more flexible.

Economic Analysis of Reinforced Concrete Bridges Considering Performance Evalution (성능평가를 고려한 철근콘크리트교의 경제성 분석)

  • 손용우;정영채;김종길
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.141-150
    • /
    • 2004
  • Recently, it is really concerned about corrosion and aging of reinforced concrete bridges. Corrosional steel reinforcing in concrete affects not only safety of bridges structure but also bending strength of reinforced concrete's member. Rate of corrosion, characteristic of bending strength, and economical evaluation aren't clear in reinforced concrete, considering performance evaluation. The purpose of study is as follows. It studies about ability of resistance's strength and cost of life cycle according to reduction of steel reinforcing's corrosion. Moreover, it shows calculating formula of bending strength with corrosion of current rate and exactly evaluates about the rest life at corrosional reinforced concrete bridges.