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OPPORTUNISTIC REPLACEMENT POLICIES
UNDER MARKOVIAN DETERIORATION

Ki-Duck Chang*
Dong-Wan Tcha**

ABSTRACT

Consider a series system of two units, named 1 and 2, respectively. Two
units are observed at the beginning of discrete time periods £=0,1,2, ... and
classified as being in one of a countable number of states. Let (£,7) be a state
of the system at time ¢, when the state of unit 1 is 7 and state of unit 2 is
r at time ¢. Under some conditions, the opportunistic replacement policy
that minimizes the expcted total discounted cost or the average cost of main-
tenance is shown to be characterized by the control limits 7¥(r) (a function
of ) and r*(@) (a function of 7) : (a) in observed state (7,7), the optimal
policy for unit 1 is to replace if 7>7*(r) and no action otherwise; (b) in
observed state (7,7), the optimal policy for unit 2 is to replace if 7>=7*(2)
and no action otherwise. In addition, this paper also develops optimal policy
in the finite time horizon case, where time horizon is fixed or a finite integer

valued 7.v. with known pmf.
1. Introduction -

+In this paper, we consider the problem of determining the replacement policy for a series
sestem of two units. Two units, called unit 1 and unit 2 respectively, are observed at the
beginning of discrete time periods £=0,1,2,.+.... , and classified as being in one of a coun-
tablé number of states. After observing the states of both units the observer must make a
decision for each unit whether to replace or not. If it costs less to replace two units concurr-
ently than to leplace them at different times, the necessary replacement of one unit upon
failure may also justify the replacement of the other unit in the system whose failure seems
imminent. If the operating costs of the system is higher for a higher level state (more deter-
iorated) than for a lower level state(less deteriorated), Ross (3) demonstrates the economical
justification of the replacement before failure, i.e., preventive replacement. The preventive

replacement of one unit may also justifies the replacement of the other unit as the replace-
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ment upon failure(corrective replacement) justifies. Suppose the operating cost of the system
is a function of the states of both unit 1 and unit 2. Then the decision for the preventive
replacement of one unit may depend on the state of the other unit. In other words, if the
optimal policy is to replace unit 1 when the states of unit 1 and unit 2 are 7 and 7, it may
not be optimal to replace unit 1 when the state of unit 2 is different from 7. Thus the Optim
al decision for unit 1 (unit 2) may be a function of the states of unit 2 (unit 1), that is,
the decision for unit 1 (unit 2) is not determined only by the state of unit 1 (unit 2), but
also the state of unit- 2 (unit 1). The aim of this paper is to charaterize the optimal policy
for such an opportunistic replacement model.

One of the few closely related works is that of Sethi (4). He also considered the opport-.
unistic replacement model of two series units. The main difference with our model is that he
views the age of each unit as the states of each unit, while in our model, there is no such
limitations in the definition of states., Thus our model may be viewed as a kind of generaliz-
ation of his model. It is found that our optimal replacement policy encompasses his'optimab
age replacement policy. ’ '

In section 2, state space, decision space, cost structure, and transition probabilities of the
system are introduced. In addition, we impose some conditions on the costs and transition
probabilities, and present preliminary lemma needed for the development of the optimal pol-
icy. Section 3 treats the case where time horizon is-infinite under the discounted cost criterion.
Section 4 treats the other cost criterions such as expected average-cost criterion and expected

total cost criterion when the time horizon is finite.

2. System Description

In this section, we present the notations and conditions which are necessary to formulate
our problem as a Markov Decision Process problem. To begin with, we list the basic assum-

ptions which are imposed upon system.

Assumptions

(1) The system consists of two series units.
(2) Each replacement takes one unit of time.
(3) If one unit or both is failed or replaced, the system is inoperative.

(4) While one unit is being replaced, the other unit does not deteriorate during this period.
. State Space

As noted in the previous section we must consider the states of both unit 1 and unit 2.
Thus the state space is defined as follows:

S={(Z, r)i Z is the state of unit 1 and  is the state of unit 2, 7=0,1, -+, 7=0,1, -},

where state 0 is a “new” state, and other states 1,2,. denote some dégree of deterioration:

in ascending order.

Decision Space

Since there are two actions for each unit, that is, to replace or do nothing, the decision
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space consists of four actions as follows:
A= {a,, a,, a,, a5}, where
action @, is to leave the two units in service (no action), action e; is to replace unit 1

only, action g, is to replace unit 2 only, and action a@; is to replace both unit 1 and unit 2.

Cost Structure
1) Each time the sytem is in state (7,7) and action a, (no action) is taken, an expected
operating cost C;, is incurred.
2) When unit 1 is replaced and unit 2 is not replaced (action a,), a replacement cost R,
is incurred.
3) When unit 2 is replaced and unit 1 is not replaced (action a,), a replacement cost R,
is incurred.

4) When both unit 1 and 2 are replaced (action a;), a replacement -cost R,, is incurred.

Transition Probability

1) If action a, is chosen at time £, then there are known transition probabilities p,;, Z,7=0,
1,..., and g, 7,5=0,1,... which satisfy
P{X,.=7, YH.;:SIX;:Z‘, Y,=7, d;=ag} =p;q,5 for all ,7,7 and, s where
X, denotes state of unit 1 in use at time £
Y, denotes state of unit 2 in use at time ¢
and
4y is the action chosen at time ¢.
2) If action @, is chosen at time ¢, then the transition probabilities for unit 1 and unit 2 are-
as follows: .
P{Xin=7, Yin=siX,=i, Y,=r, di=a}= (1if j=0 and s=r
. tO otherwise
This implies that while one unit is being replaced, the other unit does not deteriorate,
3) Similarly, if action a, is chosen at time £, then the transition probabilities for unit 1 and
unit 2 are as follows:
P{Xyn=7j, Yeu=sl1Xi=i, Yi=r, 4i=a} = (1 if j=7 and 5=0
[0 otherwise
4) If action @, is chosen at time #, then the transition probabilities for unit 1 and unit 2 are-
as follows:
‘P Xpu=j, Yen=s|X,=i, Yi=r, d4=a}= [1if j=0 and 5=0
0 otherwise

Conditions

We impose the following conditions on the costs and transition probabilities.
Condition 1: {C;}, 7=0,1,..., #=0,1, ..., is a non-decreasing bounded sequence.
Condition 2 : max } Ry, R} <<R,,<R,+R,.

Condition 3: For each £=0,1,2, ..., the function Rk(z')=fjp,»,- is a non-decreasing func tion
i=k
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of i=0,1,2,..., and the function Sk(r)=mZI£q, ;s a non-decreesing funtion of
=

rforr=0,1,2, ...
Condition 1 says that the operating cost is non-decreasing function of the state. Condition
2 says that it costs less to replace two units concufrently than to replace them at different
times. Condition 3 says that the conditional probability of a transiton into any block of states
Ak, k+1,...}, given that action @, is chosen, is a non-decreasing function of the present state
4(r) for unit 1 Cunit 2). '

The following isolated result is listed for later use. For the proof, see Derman (2).
Lemma: Condition 3 implies that for every non-decreasing bounded sequence {#( i)}; the
funct ion f(z'):Zm pip(Fand g(r) =§: grs h(s) are also non-decreasing for =0,
j=0 s=0 .

1,.., 7=0,1, ..., respectively.

3. Discounted Cost Problem

The aim of this section is to find the policy R* which minimizes the total discounted cost
incurred to the system over the infinite time horizon. In other words; we-are going to find
<out the policy R* which satisfies '

¥{,r,R)=min ¥(,r,R)

for any given initial state (7,7), where ¥ (é,r,R) is defined as
TRy =Ea' Er[C(X, YD |(X, Y,)=Gr)]

(Note: a(0=<a<1) is a discount factor.)

Note that the policy R* is said to be an optimal a-discounted policy,.or.for short, a_a-opti-
mal policy. From here on, we shall use the simple notation V(z',r)' which is’, defmned as
V@, r)=¥(,r,R*), for ease of exposition.

In order to apply the famous Blackwell’s functional equation to our problem,i t is necess-
ary to show that V(7,r) is finite for any initial sate (£,7). For that, let’s check the values

of the cost C(X,,Y,) incurred to the system at time t at various cases.

Cir lf At':ao
cx, vy= | B i A=,
R, if di=a,
Ry, if di=a,

(4, is the action chosen at time t)

This, together with condition 1, ensures that cost incurred for one unit time is bounded
and thus V(7,7) is finite for any given state (¢,7). We thus can apply Blackwell’s functio-
nal equation to our problem. The reader is advised to refer to Ross(3) and Derman(2) for
detailed reasons.

Now the functional equation of our probjem is

V(z’,r):mz'n{Ci,-i-aJZsZp,-j qrs V(7,8): Ri+aV(o,r); R,+aV({,0); Ry+aV(o,0)} (1)

for £=0,1,...r=0,1, ... and any policy which prescribes action a, in state’ (7,#) when the
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first term is the minimum, action a, when the second term is the minimum, action a,
when the third term is the minimum and action a; when the fourth term,s is the minimum,
is the a- 0pt1ma1 policy.

An explicit solution of the funcitional equations for V(4,7) is near impossible. However,
an interaction technique for approaching functional equation is available. Let V,(4,7)=0 for
all 1 and r, and define successive approximétion by

Vi@, ) =min{C;, +@3 2 pi; Grs Vi(7,8):R1+a V(0,7 Ry +a V(4,003 R + a V(0,001 ++(2)
i s

for all £=0,1,..., and r=0,1, ... »
Intuitively, V,(7,r) is the cost if we follow optimal policy R* for k periods and incur a
terminal cost of zero, given we start in state (7,7).

The next three lemmas are necessary as intermediate steps for our main results.

Lerma 1 : Given o<a<(1, it follows that
Vir(d,r)=V,(i,r) for all i,r,k, and
Ilzika(i,r)=V(i, r) for all i and r.

Proof
From equation (2), we have
Vild,rd=min}Ci, + a3 3 p:; g, V,(7,5); Ri+aVi(o,r); Rit+aV,(,0); Riy+aV,(0,0)}
i s

=min{C;,; Ki;Ry; Ry}
=V, (@)
Suppose V,(Z,r)=V,_,(Z,r) for all i and r. Then
VihiG,r) =min{Ci, + a2 pi; qrs Vi(7,)iR +aVi(0,7); Ry+aV,(i,0); R+ aV,(0,0)}
. 73
Zmin{cir‘}‘agsz:f't’j drs V/e—l(j,s>; R1+aVk*l(osr); RZ+aV}z-1<i’0); R12+aVk_1
Vk(l"r)' = (0! 0)} .
Thus Vinu(,r)=V,(@r) for all 7,7, and k. Since the sequence {V,,(z',r), ::o is bounded

and non-decreasing, it converges. Suppose the sequence { Vk(z',r)I ::0 converges to VY{,r).
Then for any given ¢>0, there exists a positive integer n, such that
aartxl VI, r) ~ Va(d,r) | <co for all n>n,.
Then for any #>#u,, we have :
V,,H(z',r):min}C;,-i-a;gp;j ars Va(7,8); Ri+aV,(o,r); R2+aV,,(i,‘o); R, +aV,(0,0)}
zmin}C,-,—i—a‘];aZp,‘j Grs [V'(7,9)-¢]; Ri+a[V/(i,0)-¢]; Ry+a[V/(i,0)-¢; R,+a
© [V7(0,0)-¢]
=min{C,~,+a4]“__”,§:p,-j Grs V'(J,$)-as; Ri+aV/(o,r)-as; R, +aV/({,0)-ae; R,+a
V'(0,0)-ac}
=min{C,~,+a§Z$:p,-j grs V(18 Ri+aV'(e,r); R+aV'({,0);Ru+aV'(00,)} -ae
Let V/({,7) ~ Vot (¢,7)=5<¢, then
V(s r)zmin}Ci,+aZjZSp;j @rs VI(7,8); Ri+aV'(0,r)iRy+aV/(7,0); R +aV?(0,0)} -ac + 8
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Since ¢ is arbitrary, we have
Y

VG, r)=min}Ci,+aX T pi; 4V (7,5); RitaV/(or); Ry+aV'(i,0); RitaV'(o,0)}
j s

Thus V’(Z,r) satisfies the functional equation (1).
By the uniqueness of equation (1) (see Ross (3)), V/(,r)=V({,r)
for all i and r; hence the proof is completed.
Lemma 2 : Under conditions (1),(2), and (3), V,.(7,r) is non-decreasing for £=0,1,...and
r=0,1, for each k.
Proof;
SinzeV,(Z,r)=0 for all i and r, V,({,7) is non-decreasing for all i and r. Now suppose
thag V,(7,7) is non-decreasing for all i and r. Then
Visr(@,r) =min C,,-{—aZZp,, q,s Vi(7,8)s Ri+aVy(o,r); R2+aVk(z 0); Ri;+aV,(0,0)}

2min{C,~+,,r+aZZ pi+i,j(]rs Vk(-ias); Rl+aVla(0’r>; R2+avk(l-+1’0>; R12+a
s

Vi(0,0)}
=Vi(G+1,7)
and .
I/I:+l(i"r)zmin{Ci’r+l+a;§:pij Grivrs Va(7,8); Ry+aV,(or+1); Rz-l—aVk(i,O);- Ry,

+aV(0,0)} = Vi (&,r+1)
Thus V(¢,7) is non(decreasing for 7=0,1, r=0,1,..., and for all k.
Lemma 3 : Under conditions (1), (2), and (8) V(i) is non-decreasing for 7=0,1,..., and

r=0,1,....
- Proof : As k—oo, Lemma 1 and 2 imply that V(Z,r) is non-decreasing forall i and r.

Now define two functions F, and G;. F, is the cost of replacing both units minus the cost
of replacing unit 1 only and G; is the cost of replacing both units minus the cost of replac-
ing unit 2 only, respectively in state (7,7). From (1), we h.a.ve

F,=R,+aV(0,0)-[R,+aV(o,r)] and
Gi=R,,+aV(0,0)-[R,+aV(i,0)].
By the montonicity of V(i,r), F, and G, are non-decreasing in r and i, respectively. Hence
there exists i* and r* such that
*=min{; R, +aV{F,0)>R,;+aV{(0,0)} .
and .
r*=min{r: R;+aV(0,r)>R,+aV(0,0)}.
Next, wo consider two functions P;, and @, as follows;
P,y =min)Ci+ DX prsdie VCiiS)i RataV (o))
and
Q,=min}R,+aV(0,r); Ri,+aV(0,0)}
Then we can write equation (1) as follows
V(,7)=min{P;; Q,} ' &)
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In equation (3), when V({,7)=P;,, the optimal policy for unit 1 is no action and when
V({¢,r)=@Q,, the optimal policy for unit 1 is to replace. In either case, however, unit 2 may
be replaced or not according to the state of unit 2.

Simiarly, we consider two functions R;, and such that

Ri,=min{C5,+a‘§,Zslj)3J- qrs V{7,8); Ri+aV{(a,r)}

and
S;=min{R,+aV(7,0); Ri;+aV(0,0)}

Then we can write equation (1) as follows:

V(@,7) =min{K;;S;} @

In equation (4), when V(,7)=R,,, the optimal policy for unit 2 is no action and when
V(i,r)=S; the optimal policy for unit 2 is to replace. Thereiore, we can obtain optimal
policies for unit 1 and unit 2 from equations (3) and (4), respectively.

We are now in a position to present the following main Theorem in this paper.

Theorem 4 : Under conditions (1),(2), and (3) there exist éontrOl limits i* (#) for r=0,
1,..., and 7* (&) for 7=0,1,... such that
(a) In observed state (7,7), optimal policy for unit 1 is to replace if i=7*(») and
no action otherwise.
(b) In observed state (7,7), optimal policy for unit 2 iS to replace if #=>7*(¢)and
no action otherwise.
(¢) i*(r)=min{¢ : P,,>Q,} for each r=0,1, ..., and r*@)=min{r : R;,>S;} for
each 7=0,1, ...
Proof:

We first prove the part (a) of the Theorem. Since P;, is non-decreasing for all i and @,
is independent of i, J;,=P;,—@Q), is non-decreasing for all i. Then for all states (7,7) when
i=i*(r), P;,>Q,. Hence replacing unit 1 minimizes the cost objective. -

Simlarly K;,=R;,~S; is non-decreasing for all i and for all states (7,7) where r=>7r%(?),
R;,>S,;. Hence replacing unit 2 minimizes the cost objective. The above structure of optimal
policy follows.

Corollary 4 : Under conditions (1), (2), and (3) the control limits 7*(#) and r*(#)satisfy the
following properties. -
a) {*(r)=i* for all »=7»* and ¢*(+) is non-increasing in r>r*,
b) 7#(i)=>r* for all i>¢* and 7*#(:) is non-increasing in 7>7*,
Proof:

a) Suppose *(r)<i* for some r>r*, then there exists 7<7* such that P;,>Q,, that is,

min{C;,+a§¥pij Grs V(7,8); Ry+aV({,0)}>nmin{R,+aV(0,7); Vi,+aV(0,0)}. Thus

Ry+aV{,0)>min{R, +aV{(0,r); Ri,+aV{(0,0)}
Since 7<7* and r>r*, we have, R,+a V(,0)<R,,+aV{(0,0)<R,+aV(o,7). This is a
contradiction. Hence ¢*(r)>7* for all r>>r*,
Next we show the monotonicity of 7*(») for all r=7*.
For any z'Zz'*O) and 7>=7*, we have
Ry +aV{(o,0)<min{R,+aV{(o,r); R,+aV(i,0)}and P;.>Q,.
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Since P,—,=min{C,v,+a§ZS:p‘-jq,s V{is); Ro+aV(Z,0)} and Q,=min{R,+aV(o,r);R,+aV
(0,0} = Ry +aV (0,0, c,.,+}1;§5: bis G V(iSY>Rin+aV(0,0).
" By the montonicity of C;, +a}ZSZp,-jq,5V( 7,s) and R,+aV (o7,
Cirtr +a§§:p,-jq,ﬂ,s V(7,5)> Ry,+aV(0,0) and Rl+aV(0,r+1)>R‘12+aV(o,o).

Therefore
min {C,, 41 +a§§pi,- Gri15s V(7,85 Ro+aV(E,0)} >min{R,+aV(o,r +1); Ry+aV(o,0)}

and hence z'*(r)Zz'*(r-l—l). Thus *(r) is non-increasing in r=>r*,
b) Similarly, we can also show that r*(Z)>7r* for all >:* and r*(¢) is non-increasing in

T>i*,

Notes:

(1) The example presenfed in this section and many other examples say that in most
cases r*(and 7*(r) are non-increasing for each 7=0,1,..., and r=0,1,..., respectively.
Especially, it is true for almost all pure deterioration processes.

(2) By Theorem 4, corollary 4, and Note (1), we can show that the structure of optimal
policies are as shown in Fig.1. However, in most cases, structure of optimal policy is

simpler than the structure shown in Fig.1.

State
of
unit 27 Repflace
Unigj2
[
1
: Relplace | Both
Units|
3
21 No| Actiofn
Refplaee | Unit|1
1
0

0 2z 3 4 5 & 7 5 9
. ‘ state of unit 1
Fig.1. Structure of optimal policy

Numerical Example

Consider a series system of two units, i e., unit 1 and unit 2, whose performances at any
time £ =0,1,... can be characterized by one of 10 states for unit 1 and one of 8 states for.-
unit 2. The cost structure and deterioration processes of each unit are as below and discoun-

ted factor is set to @=0.9. The structure of optimal policy is shown in Fig.2.
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a.C=(C,)= 5 615,
6 715
7 815
8 915
8 91015
8 9101115
8 910111215
8 91011121315
8 91011121314 15
115 15 15 15 15 15 15 15

b. R,=20, R,=20, R;=30

N U W NN =D
NS T W
N U1 R W

N Oy U s W

=N Oy O

. P=(p;)=,.6.2.1.10 0 0 0 0 0O
" 0.72.100000 0
0 0.6.2.1.10 00 0
000.8.1.1000 0
000 0.5.3.1.10 0
00000.6.1.1.1 .1
00000 0.7.1.1 .1
000000 0.8.1.1
00000O00O0OO0.9 .1
00000000 01.0.

@=(¢,)=(.7.2.1. 0 0 0 0 0O

0.8.1.1. 000 0

0 0.6.2.1.1 0 0

00 0.7.1.1.1 0

000 0.8.1.1 0

0 0000.9.1 0

00 0 00 0.8 .2

000000 010

Replace Unit 2
state of L—-I_____
‘_“’“ 2 Replace Both Units
i'_L’_L__

. F‘”‘“"‘"‘““’L"“'"
No Action i

{

i Replace

| Unit 1

{ 3
i* state of unit 1

Fig. 2. Stucture of optimal policy of example 1.
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4. Other Cost Criterion Problem

In this section we establish an optimal policy which minimizes the expected average-cost
per unit time criterion and then determine an optimal polocy which minimizes the expected
total cost when the time horizon (or planning hox;izon) is finite. In the finite time horizon
case, we consider two cases; (1) time horizon is given, and (2) time horizon is not known
with certainty but the pmf of time horizon is known. '

4.1. Expected Average-Cost Problem

The structure of the optimal policy minimizing the expected average cost is similar to the
structure of optimal policy minimizing the discounted-cost. Especially the two policies are
exactly-same for all & near enough to 1. To do this we follow the approach suggested in
Ross (3). For the discounted-cost problem, let’s define f,(Z,7)=V(i,r)— V(0,0). Then the
functional equation (1) can be rewritten as:

(I*Q)V(0,0D +f,,(i,r)=min {Cir+az:zj)ij Grs fa(i;s);Rl‘{"afa(O:r); R2+afa<2.10>; R12+
J s

(0,00} B
when all the costs(C;,, Ry, R, R,;) are finite, we note that .V(i,r)—V(o,o)<oo for all (Z,7)
and . Under this condition, f,(Z,7) converges to a bounded function f(z",r), and (1—a)
V(0,0) converges to a constant g for some sequence a,—1 (for the proof, see Ross(3)). In
the limit, equation (5) becomes
g+ /@) =min{Cor + 33 0:5 Grs F(G.8)iR A f(0,r); Ry+f(7,03; Rip+5(0,0)} A 6

Then there exists an optimal policy #* such that g is a minimum average cost and z* is
any policy which, for each i and r, prescribes action minimizing the right-hand side of equ-
ation(6).

Since V(7,r) is non-decreasing for each i and r under conditions (1),(2), and (3), fu(i,")
is also non-decreasing for every (7,7) and a. The convergence of f.(7,7) to a bounded func-
tion f(Z;7) implies f(7,7) is non-decreasing for all i and r. Define functions P;,, Q,, Ky, and
S; as foHows:’ »

P =min|C; + P;E’Pajqrs J(7,8); Rt /(E,00}

Q,=min{R, + f(0;7); Ri-+f(0,0)}

Rierin{cir'}";?j)ijqrs JACEIHE e N iCAD)!
and ’

S;=min{R,+(#,0); Kiz+f(0,0)}

Then we can easily obtain the structure of optimal policy. Let 7%(+) =min{¢ : P;,>Q,}and
r*(©) =min{r : R;,>S;} for each #,r=0,1,... The optimal policy for unit 1 is to replace
if 1>7*(7) and no action otherwise; and the optimal policy for unit 2 is to replace if r=

7#(¢) and no action otherwise.

4. 2. Finite Horizon Expected Cost Problem
When the time horizon T is given, we can éasily obtain following recursive formula that

yields an optimal policy which minimizes the total cost of operating the system up to and
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including the time horizon T(see Derman(2)).
V.* (i,r)=min{cfr+ZZPi,~ Grs V*0ura (7,50 Ri+V*,,,00,7); R+ V*,50040); R+ V¥,
i s

(0,00} (D

for i=0,1,..., 7=0,1,..., and #=0,1, ..., T; and V7, (Z,7)=0 for all i and r.

Any policy which chooses action a, (no action ) in state (7,7) at time n when the [first
term of the right-hand side of equation (7) is the minmum, action a; (replace unit 1 only)
when the second term is the minimum, action a, (replace unit 2 only) when the third term is
the minimum, and action a, (replace both units) when the fourth term is the minimum, isan
optimal policy. .

In the real stutations, }it is not true that time horizon is fixed. Instead, the time horizon
must be considered to be a r.v. A practical example of such a situation arises in replacing
parts for a military aircraft which will become obsolete at some date in the future that is not
known with certainty, but which can be described probabilistically. Here the time horizon is
the time until obsolescence.

When the time horizon T is a {inite r.v. with given pmf, f;, {=0,1,..., m, the recursive
formula that yields an optimal policy which minimizes the cost of operating the system up
to and including the time horizon is

V* ﬂ(i”Dzmin{Cir+ﬁn§:?pij grs V*,0.(77,5); R, +P,V*,,,(0,); R2+13nV*n+l<i;O>; Ry,

+ P, V¥*,.:(0,0)} @&
for £=0,1,... »=0,1,... and #=0.1,... m; and
V*,0(E,r) =0 for all i and r, where P,=1—P, and P,=Ff,/(fo+ funr+ - +Fn). Any policy
_which chooses the action that minimizes the right-hand side of equation (8) is an optimal
policy. (For detail, see Chang(1)).
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