• 제목/요약/키워드: Total Pollution Load Management System

검색결과 70건 처리시간 0.027초

시화호 유역 비점오염물질의 유출특성 및 부하량 연구 (Study on the Characteristics and Non-point Source Pollution Loads in Stormwater Runoff of Shihwa Lake)

  • 나공태;김경태;김종근;방재현;이정무;김성근;김은수;윤민상;조성록
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제14권1호
    • /
    • pp.40-50
    • /
    • 2011
  • 본 연구에서는 시화호로 유입되는 다양한 비점오염원 중 도심유역을 흐르는 안산천 및 화정천과 산업지역인 반월산단 토구를 통한 강우유출수 내 총부유물질, 화학적산소요구량, 용존영양염, 총인 및 총질소 등의 비점오염물질의 유출특성 및 총유출부하량을 조사하였다. 조사지역 및 조사 시기에 따라 차이는 있으나 강우 시작 후 비점오염물질의 농도가 증가한 뒤 감소하는 경향을 보였다. 총부유물질의 평균농도는 안산천이 315 mg/L로 가장 높았으며 반월산단 토구에 비해 약 2~5배 정도 높았으나 화학적산소요구량, 총인 및 총질소의 평균농도는 반월산단 토구가 도심하천에 비해 높은 것으로 나타났다. 총부유물질은 화학적산소요구량 및 총인과 양의 상관성을 보였으며 용존영양염과는 음의 상관성을 나타냈다. 반월산단 토구를 통한 비점오염물질의 총유출량은 토구의 유역면적에 비례하였으며 가장 유역면적이 넓은 3토구에서의 비점오염물질의 유출량이 가장 높았다. 조사기간 내 약 30시간 동안 반월산단토구를 통하여 총부유물질 187,536 kg, 화학적산소요구량 17,118 kg, 총인 922 kg, 총질소 13,519 kg의 비점오염물질이 유출되는 것으로 나타났다. 반월공단 토구 유역면적은 전체 시화호 소유역 중 3%를 차지하는 것을 고려할 때 막대한 양의 비점오염물질이 별다른 처리과정 없이 시화호로 직접 유출되고 있음을 알 수 있었다. 이러한 강우시 비점오염물질의 유출은 시화호 수질을 더욱 악화 시킬 것이기 때문에 비점오염원 관리 및 저감대책이 시급하게 요구되며 본 연구결과는 향후 시행예정인 시화호 연안오염총량제의 비점오염 최적관리기법 개발에 유용한 정보를 제공하고 있다.

교통관련 포장지역 비점오염원에서의 오염물질 유출원단위 산정 (Determination of Pollutant Unit Loads from Various Transportation Landuses)

  • 이소영;이은주;;김이형
    • 한국물환경학회지
    • /
    • 제24권5호
    • /
    • pp.543-549
    • /
    • 2008
  • Human activities and land-use practices are intensely widening the urban areas. High impervious surface areas cover much of urban landscapes and are the primary pollutant sources which can lead to water quality and habitat degradation in its watershed. As the urban areas expand, transportation land-use such as parking lots, roads, service areas, toll-gates in highways and bridges also increase. These land-uses are significant in urban pollution due to high imperviousness rate and vehicular activities. To regulate the environmental impacts and to improve the water quality of rivers and lakes, the Ministry of Environment (MOE) in Korea developed the Total Pollution Load Management System (TPLMS) program. The main objective is to lead the watershed for a low impact development. On a local scale, some urban land surfaces can be emitting more pollution than others. Consequently, in urban areas, the unit loads are commonly employed to estimate total pollutant loadings emitted from various land-uses including residential, commercial, industrial, transportation, open lands such as parks and golf courses, and other developed land like parking areas as a result of development. In this research, unit pollutant loads derived specifically from transportation land-uses (i.e. branched out from urban areas) will be provided. Monitoring was conducted over 56 storm events at nine monitoring locations during three years. Results for the unit pollutant loads of transportation land-use are determined to be $399.5kg/km^2-day$ for TSS, $12.3kg/km^2-day$ for TN and $2.46kg/km^2-day$ for TP. The values are higher than those of urban areas in Korean MOE and US highways. These results can be used by MOE to separate the pollutant unit load of transportation landuses from urban areas.

환경관리해역의 이용개발현황과 수질변화경향 및 영향평가 개선방안 (Diagnosis of Development Projects and Water Quality Changes in the Environmental Management Sea Areas and Improvement of Impact Assessment)

  • 전은주;이용민;이대인;김귀영
    • 해양환경안전학회지
    • /
    • 제24권6호
    • /
    • pp.726-734
    • /
    • 2018
  • 최근 3년간 검토된 환경관리해역에서 이루어진 해역이용협의 건수는 총 60건으로 조사되었다. 환경보전해역에서는 지속적으로 감소하였고, 특별관리해역에서는 증가하는 양상을 나타내었다. 환경관리해역의 개별사업유형을 분석한 결과 인공구조물 설치사업이 가장 높은 비율을 차지하였고, 그 외 항만 어항개발, 연안정비 및 해수 인 배수사업유형이 많이 이루어졌다. 환경관리해역에서 국가해양환경정보통합시스템(MEIS) 자료를 활용하여 2006~2017년까지 경년별 수질변화경향을 비교한 결과, COD는 뚜렷한 증감의 변화는 보이지 않았으나 환경보전지역은 다소 증가하였으며, TN과 TP의 농도는 다소 감소하는 경향을 보였다. 특별관리해역인 광양만과 마산만 및 환경보전해역인 가막만에서는 주로 하계에 빈산소수괴가 출현하였다. 이러한 환경관리해역에서의 이용 개발행위가 지속적으로 이루어지고 있으므로, 이에 따른 해양환경부문 환경영향평가(해역이용협의)시에는 충분한 수질변화에 대한 실태분석 및 사업추진에 따른 수질영향과 퇴적물의 오염상태를 철저히 진단해서 오염원관리에 대한 대책이 중점적으로 평가되어야 할 것으로 판단된다. 특히, 각 환경관리해역의 지정 목적에 따른 유지 수질목표를 명확히 설정하여, 오염원 및 연안오염총량관리와 연계하여 오염 부하량 저감대책을 제시하여야 할 것이다.

과학적인 수질관리를 위한 오염총량관리제도의 추진 방안 (Policy Directions of Total Maximum Daily Loads for the Scientific Management of Water Quality)

  • 박석순;나유미;나은혜
    • 환경영향평가
    • /
    • 제10권2호
    • /
    • pp.157-165
    • /
    • 2001
  • This paper presents the policy directions of total maximum daily loads(TMDL), which was recently adopted in Korea, for scientific management of water quality. The basic principles of water quality management are also discussed in this paper, along with the TMDL policy in United States as well as the previous policy in Korea. We discussed several unreasonable points out of the previous approaches, such as regulation of all point sources with equal standards, negligence of an assimilative capacity of the receiving water, and emphasis only on drinking water supply, etc.. For successful applications of the TMDL policy in Korea, the following directions are suggested: 1) the unit drainage basin for each TMDL application should be given, 2) the water body where the water quality standards should be maintained, needs to be guided, 3) the water quality parameters of TMDL should be given, 4) the technical guidances should be given for applications of water quality models, and 5) the seasonal TMDL would be allowed. In order to maximize the benefits of the TMDL policy, the local governments would need to implement the following strategies: 1) the increment of an assimilative capacity of the receiving water, 2) the effective controls of the non-point source pollution, 3) the advanced treatment of the point sources, 4) application of system optimization techniques along with effluent trade, and 5) utilization of watershed management systems.

  • PDF

하천유역에서의 기저유출 분석을 통한 총질소 하천오염부하량 연구 (A Study of Total Nitrogen Pollutant Load through Baseflow Analysis at the Watershed)

  • 최윤호;금동혁;류지철;정영훈;김용석;전지홍;김기성;임경재
    • 한국물환경학회지
    • /
    • 제31권1호
    • /
    • pp.55-66
    • /
    • 2015
  • It has been well known that it is not easy to quantify pollutant loads driven by non-point source pollution due to various factors affecting generation and transport mechanism of it. Especially pollutant loads through baseflow have been investigated by limited number of researchers. Thus in this study, the Web-based WAPLE (WHAT-Pollutant Load Estimation) system was developed and applied at study watersheds to quantify baseflow contribution of pollutant. In YbB watershed, baseflow contribution with WWTP discharge is responsible for 49.5% of total pollutant loads at the watershed. Among these, pollutant loads through baseflow (excluding any WWTP discharge) is responsible for 61.7% of it. In GbA watershed, it was found that 58.4% is contributed by baseflow with WWTP discharge 2.9% and 97.1% is by baseflow. For NbB watershed (without WWTP discharge), 52.3% of pollutant load is transported through baseflow. As shown in this study, it was found that over 50.0% of TN (Total Nitrogen) pollutant loads are contributed by non-direct runoff. Thus pollutant loads contributed by baseflow and WWTP discharge as well as direct runoff contribution should be quantified to develop and implement watershed-specific Best Management Practices during dry period.

낙동강수계 수질오염총량관리를 위한 시범소유역 유황별 유달율 산정방법 연구 (A Study on Estimation of the Delivery Ratio by Flow Duration in a Small-Scale Test Bed for Managing TMDL in Nakdong River)

  • 손태석;박재범;신현석
    • 한국물환경학회지
    • /
    • 제25권5호
    • /
    • pp.792-802
    • /
    • 2009
  • The objective of this study is to construct the watershed management system with link of the non-point sources model and to estimate delivery ratio duration curves for various pollutants. For the total water pollution load management system, non-point source model should be performed with the study of the characteristic about non-point sources and loadings of non-point source and the allotment of pollutant in each area. In this study, daily flow rates and delivered pollutant loads of Nakdong river basin are simulated with modified TANK model and minimum variance unbiased estimator and SWAT model. Based on the simulation results, flow duration curves, load duration curves, and delivery ratio duration curves have been established. Then GIS analysis is performed to obtain several hydrological geomorphic characteristics such as watershed area, stream length, watershed slope and runoff curve number. As a result, the SWAT simulation results show good agreements in terms of discharge, BOD, TN, TP but for more exact simulation should be kept studying about variables and parameters which are needed for simulation. And as a result of the characteristic discharges, pollutants loading with the runoff and delivery ratios, non-point sources effects were higher than point sources effects in the small-scale test bed of Nakdong river basin.

농업소하천 유역의 기저유출에 의한 오염부하특성 (Pollutant Load Characteristics by Baseflow in a Small Agricultural Watershed)

  • 신용철;류창원;최예환;임경재;최중대
    • 한국물환경학회지
    • /
    • 제22권2호
    • /
    • pp.244-249
    • /
    • 2006
  • Natural environment of Weolgokri watershed has been well preserved as a traditional agricultural watershed. A year record of streamflow, $NO_3-N$, T-N and T-P concentrations data (April 2004 - Mar. 2005) were examined to estimate annual and seasonal patterns of pollutant loads in streamflow and baseflow from the agricultural watershed. To estimate pollutant loads from baseflow, baseflow component was separated from streamflow using the digital filter method in the Web-based Hydrograph Analysis Tool system and loads of $NO_3-N$, T-N and T-P from streamflow and baseflow were evaluated. The $NO_3-N$, T-N, and T-P loads from streamflow were 13.85 kg/ha, 45.92 kg/ha and 1.887 kg/ha, respectively, while corresponding loads from baseflow were 7.43 kg/ha, 24.70 kg/ha, 0.582 kg/ha, respectively. It was found that $NO_3-N$ and T-N loads were contributed slightly more by the baseflow (53% and 53% of Total-loads) than by the direct runoff (47% and 47% of Total loads). However, only 30% of total T-P load was contributed by the baseflow. It is recommended that one needs to assess pollutant load contribution by the baseflow to identify appropriate pollution control strategies for an effective watershed management.

A Study on Runoff Characteristics of Combined Sewer Overflow(CSO) in Urban Area Using GIS & SWMM

  • Kim, Jae-Hoon;Paik, Do-Hyeon
    • 한국환경보건학회지
    • /
    • 제31권6호
    • /
    • pp.467-474
    • /
    • 2005
  • The runoff characteristics of combined sewer overflow(CSO) in the urban area of Jeonju were investigated and analyzed by using the SWMM (Storm Water Management Model) and GIS. From August to November 2004, investigations on two rainfall events were performed and flowrate, pH, BOD, COD, SS, T-N and T-P were measured. these data were used for model calibration. Using GIS technique, watershed characteristics of study area were calculated. that is, divide into sub_basin, total width, slope, make soil map etc. On the basis of the measured data and the simulation results by SWMM, it could be known that the $80-90\%$ of pollution load are discharged in early-stage storm runoff. SMC(site mean Concentration) for combined sewer system area were BOD 28.1, COD 31.5, SS 186 ppm etc. this is shown that during the rain fall, high concentration of waste was loaded to receiving water. Unit loads of combined sewer system area were BOD 306, COD 410, SS 789, T-N 79, T-P 6.8 kg/ha/yr.

하천등급화 모델을 이용한 삽교호 수질관리 방안에 관한 연구 (Water Quality Management Planning for the Lake Sapgyo by Stream Grading Method)

  • 최정호;김홍수;조병욱;박상현;이무규
    • 한국물환경학회지
    • /
    • 제36권3호
    • /
    • pp.245-254
    • /
    • 2020
  • Water quality improvement projects are being implemented without predicting the effect of water quality improvement on Lake Sapgyo. As the method of selecting the target stream for the effective conduct of water quality improvement projects the method of rating the streams were studied. To build a stream grading method, 60 major streams in the Lake Sapgyo system were monitored. The selection method of rivers subject to priority management for water quality improvement was applied to the stream grading method using the Analytic Hierarchy Process (AHP). The analysis of importance by site by stream grading method revealed the following: water quality (36.0%), flow (26.1%), travel load (13.4%), TMDL density (12.0%), TMDL (8.9%), and area (3.7%). The pollution level of the river was scored by using the stream grading method, and the ranking of 51 streams was calculated. Based on this, the group was classified into six grades (A-F). Among the groups, the F and E groups were selected as the priority management streams. Cheonan-Cheon (Cheonan City) was selected as the first stream to establish water quality improvement measures in the Lake Sapgyo system, and Seowoo-Cheon (Dangjin City) was selected as the second site, and Oncheon-Cheon (Asan City) was selected as the third site. Each local government is expected to improve the water quality improvement effect with limited resources when establishing and implementing water quality improvement measures for the streams (F group, E group) to be managed in this study.

경안천 서하보 수저퇴적물 준설이 경기도 광주시 수질오염총량관리에 있어 추가적인 부하량 삭감수단으로써 타당한가? (Dredging Bottom Sediments of Seoha Weir at the Downstream of Kyongan Stream can be Used as a Feasible Pollutant Load Reduction Option in the Total Pollutant Load Management System of Kwangju City?)

  • 유승훈;이범연;이강현;박신정;이창희
    • 한국물환경학회지
    • /
    • 제27권1호
    • /
    • pp.19-29
    • /
    • 2011
  • In order to assess the influences of bottom sediment on water quality, following measurement were made. (1) Estimations of pollutant loads from the bottom sediment based on mass balance concept, (2) measurements of pollutant concentrations in the sediment to assess the pollution level and influence potential, (3) in situ and laboratory measurements of Sediment Oxygen Demants (SOD) and pollutant load (sediment release) from bottom sediment. Analyses of inflow and outflow loadings using simple mass balance show that there are some variations found according to the pollutants. However, there is no consistent evidence that the sediment can be a source of pollutants. Pollutant concentrations in the sediment range 16~724.8 mg/kg (COD), 1.68 ~12.64 mg/kg (T-P), 5.6~76.8 mg/kg (T-N), 0.32~21.6 mg/kg ($NH_3$-N), 0.092~0.544 mg/kg ($NO_2$-N), 4.8~18.4 mg/kg ($NO_3$-N), and 1.59~11.23 mg/kg ($PO_4$-P). Measured SOD ranges $0.190{\sim}0.802g{\cdot}m^{-2}{\cdot}d^{-1}$ and measured release rate ranges $-1618.42{\sim}10mg/m^2{\cdot}d$(COD), $-12{\sim}16mg/m^2{\cdot}d$(T-P), $-197.37{\sim}140mg/m^2{\cdot}d$(T-N), $0.4{\sim}74.32mg/m^2{\cdot}d$($NH_3$-N), $-2.04{\sim}0.8mg/m^2{\cdot}d$ ($NO_2$-N), $-70{\sim}40mg/m^2{\cdot}d$ ($NO_3$-N), and $-26.11{\sim}28.55mg/m^2{\cdot}d$($PO_4$-P). All study results indicate that bottom sediments in the Seoha weir show only limited effects on the water quality. It implies that sediment dredging is not an effective option or management measure to reduce pollutant loading.