• Title/Summary/Keyword: Total Petroleum Hydrocarbon

Search Result 112, Processing Time 0.026 seconds

Effects of Oil Contamination Levels and Microbial Size on Hydrocarbon Biodegradation. (원유오염농도와 미생물 농도가 탄화수소의 생분해에 미치는 영향)

  • 백경화;김희식;이인숙;오희목;윤병대
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.4
    • /
    • pp.408-412
    • /
    • 2003
  • The purpose of this study was to evaluate the Influence of oil concentration and inoculum size on petroleum biodegradation in soil by Nocardia sp. H17-1, isolated from oil-contaminated soil. To investigate the effect of initial oil concentration on total petroleum hydrocarbon (TPH) degradation, the soil was artificially contaminated with 10, 50 or 100 g of Arabian light oil per kg of soil, respectively. After 50 days, Nocardia sp. H17-1 degraded 78,94 and 53% of the each initial TPH concentration, respectively. Also, it produced 1.35, 4.21, and 5.91 mmol of $CO_2$ per g of soil, respectively. The degradation rate constant (k) of TPH was decreased in proportion to the initial oil concentrations while $CO_2$ production was increased with the concentration. The growth of Nocardia sp. H17-1 was remarkably inhibited when it was inoculated into soil containing 100 g of oil per kg of soil. To evaluate the effect of the inoculum size, the soil was artificially contaminated with 50 g of Arabian light oil per kg of soil, and inoculated with $3${\times}$10^{6}$ , $5${\times}$10^{7}$ , $2${\times}$10^{8}$ cells per g of soil, respectively. After 50 days, the degradation of TPH was remained with similar in all treatment but degradation rate constant (k) and evolved $CO_2$ was increased with increasing the inoculum size.

Global Trends of Marine Petroleum Exploration Science Information (해저 석유탐사 학술정보 분석)

  • Kil, Sang Cheol;Park, Kwan Soon;Cho, Jin Dong
    • Economic and Environmental Geology
    • /
    • v.47 no.6
    • /
    • pp.673-681
    • /
    • 2014
  • Recently, many countries in the world try to develop alternative energy sources, however, traditional hydrocarbon resources are still occupying most of the energy resources. Exploration demands for high technologies are increasing in the development of limited oil & gas resources field owing to the exhaustion of hydrocarbon resources for access area. Therefore, an effort for the development and the application of new technologies such as azimuth seismic survey, ocean-bottom seismic survey and marine controlled-source electromagnetic survey is necessary as well as an understanding of the existing technologies such as 2D/3D seismic survey. This dissertation is designed with the purpose of introducing marine hydrocarbon exploration technologies and analyzing their internalexternal researches, development and science information. In this study, we analised total 616 dissertations for the marine petroleum exploration released in the Sci-expanded DB of 'web of science' during the 2001~2014 periods.

A Case Study of Monitored Natural Attenuation at the Petroleum Hydrocarbon Contaminated Site : II. Evaluation of Natural Attenuation by Groundwater Monitoring (유류오염부지에서 자연저감기법 적용 사례연구 II. 지하수모니터링에 의한 자연저감 평가)

  • Yun Jeong Ki;Lee Min Hyo;Lee Suk Young;Noh Hoe Jung;Kim Moon Soo;Lee Kang Kun;Yang Chang Sool
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.3
    • /
    • pp.38-48
    • /
    • 2004
  • Natural attenuation of petroleum hydrocarbon was investigated at an industrial complex about 45 Km away from Seoul. The three-years monitoring results indicated that the concentrations of DO, nitrate, and sulfate in the contaminated area were significantly lower than the background monitoring groundwater under the non-contaminated area. The results also showed a higher ferrous iron concentration, a lower redox potential, and a higher (neutral) pH in the contaminated groundwater, suggesting that biodegradation of TEX(Toluene, Ethylbenzene, Xylene) is the major on-going process in the contaminated area. Groundwater in the contaminated area is anaerobic, and sulfate reduction is the dominant terminal electron accepting process in the area. The total attenuation rate was about 0.0017∼0.0224day$^{-1}$ and the estimated first-order degradation rate constant(λ) was 0.0008∼0.0106day$^{-1}$ . However, the reduction of TEX concentration in the groundwater was resulted from not only biodegradation but also dilution and reaeration through recharge of uncotaminated surface and groundwater. The natural attenuation was, therefore, found to be an effective, on-going remedial process at the site.

Ozone-Enhanced Remediation of Diesel-Contaminated Soil (II): A Column Study (Ozone에 의한 유류오염토양 복원 연구 (II) : 토양 컬럼상에서의 오존 산화)

  • Choi, Heechul;Heechul;Lim, Hyung-Nam;Kim, Kwang-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1825-1832
    • /
    • 2000
  • Column experiments were conducted by using soil columns, to investigate feasibility and efficiency of in-situ ozone enhanced remediation for diesel-contaminated soil. The injection of gaseous ozone into soil column revealed the enhanced decomposition of ozone due to the catalytic reaction between ozone and metal (e.g., Fe, Mn etc.) oxides as evidenced by as much as 25 times shorter half-life of ozone in a sand packed column than in a glass beads packed column. Substantial retardation in the transport of and the consumption of ozone were observed in the diesel contaminated field soil and sand packed columns. After 16 hrs ozonation, 80% of the initial mass of diesel (as diesel range organic) concentration of $800{\pm}50mg/kg$, was removed under the conditions of the flow rate of 50mL/min and $6mg-O_3/min$. Whereas, less than 30% of diesel was removed in the case of air injection. Analysis of the residual TPH(total petroleum hydrocarbon) and selected 8 aliphatics of diesel compounds in the inlet and the outlet of the column confirmed that diesel nonselectively reacted with ozone and then shifted to lower carbon numbered molecules. Water content also was found to be an important parameter in employing ozone to the hydrocarbon-contaminated soil.

  • PDF

Comparison of Extraction Methods for the Analysis of Total Petroleum Hydrocarbons in Contaminated Soil (오염토양내 석유계 총탄화수소 분석을 위한 추출방법의 비교)

  • Eui-Young Hwang;Wan Namkoong;Jung-Young Choi
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.2
    • /
    • pp.45-53
    • /
    • 2000
  • Two extraction methods for total petroleum hydrocarbon (TPH) from contaminated soil were evaluated. The soil used for this study was sandy loam. Diesel oil was selected as representative petroleum hydrocarbons and was spiked at 100, 10,000, 50,000mg TPH/kg dry soil. Percentage recovery of TPH by shaking method was higher compared to Soxhlet extraction. At extraction time of 2 hours and sample to solvent ratio of 1 : 5, the highest percentage recovery was obtained. In this condition, percentage recovery of TPH in soil contaminated with 100mg/kg and 50,000mg/kg as TPH was 95.9% and 95.5%, respectively The volume of solvent lost by volatilization in shaking method was relatively small compared to Soxhlet extraction.

  • PDF

A Study on the In-Situ Soil Vapor Extraction and Soil Flushing for the Remediation of the Petroleum Contaminated Site (유류로 오염된 토양 복원을 위한 토양가스추출 및 세척공정의 현장적용 연구)

  • Ko, Seok-Oh;Kwon, Soo-Youl;Yoo, Hee-Chan;Kang, Hee-Man;Lee, Ju-Goang
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.3 s.3
    • /
    • pp.83-92
    • /
    • 2001
  • Field investigations for subsurface soil and groundwater at a gas station showed that the site was severely contaminated and even petroleum compounds as free liquid state were observed. Pilot-scale soil flushing and soil vapor extraction process(SVE) were applied to evaluate the effectiveness of pollutants removal. Surfactant solution, Tween 80, was used to enhance the solubility of petroleum compounds and resulted in about 10 times increase on TPH(Total Petroleum Hydrocarbon) concentration. As for SVE method, maximum concentration of TPH and BTEX reached within 24 hours of extraction and then continuously decreased. Considerations on the groundwater level and the kinetic limitation for volatilization of contaminants have to be taken into account for the effective application of SVE process.

  • PDF

Germination Rate and Radicle Growth Inhibition in Crops by Total Petroleum Hydrocarbons (TPH) (Total petroleum hydrocarbon에 의한 작물의 발아 및 유근생장 저해)

  • Lim, Sung-Jin;Kim, Jin-Hyo;Choi, Geun-Hyoung;Kwon, Yu-Bin;Kim, Doo-Ho;Park, Byung-Jun
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.273-278
    • /
    • 2013
  • BACKGROUND: Total petroleum hydrocarbons (TPH), which are main materials of soil contamination by oil, are a term used for any mixture of hydrocarbons. Korea Ministry of Environment established the maximum permissible level of TPH in farmland by 500 mg/kg, and reported that the TPH level of soil in 266 installation such as gas station, transport company, and military unit ranged from 1,356 to 55,117 mg/kg and were much higher than the maximum permissible level in 2011. METHODS AND RESULTS: To determine the effect of TPH on crops, we investigated the effect of gasoline, kerosene, and diesel on the germination and radicle growth of mainly consumed crops. The germination rates of control in investigated all crops ranged from 80.0-100%. The germination and radicle growth in majority of investigated crops were not inhibited even at 2,500 mg/L. However, germination in onion, leek, and green perilla and radicle growth in leek, rape, tomato, and green perilla were significantly inhibited by increasing concentrations of gasoline, kerosene and diesel treatment. Germination and radicle growth inhibition of green perilla by kerosene and diesel were the highest, the percent inhibition at the 500 mg/L were 100 and 98.6%, 100 and 88.2%, respectively. 50% inhibition of germination in green perilla by kerosene and diesel were 39.96 and 29.87 mg/L, and 50% inhibition of radicle growth were 52.76 and 177.96 mg/L, respectively. Conclusion(s): These results suggest the possibility that the maximum permissible level of TPH might to be established general level with exception by crops.

디젤로 오염된 토양의 효과적인 Bioventing

  • 왕성환;오영진;문원재;박태주
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.66-69
    • /
    • 2002
  • In this work, cost effective venting is considered by comparing flow rates of 5$m\ell$/min, 10$m\ell$/min, and 20$m\ell$/min. Studies were performed on a soil artificially contaminated with diesel oil (the initial TPH(Total Petroleum Hydrocarbon) concentration of 7098mg/kg), and nutrient condition was C:N:P rate of 100:10:1. The soil has a sandy texture with pH of 6.8, 2.16 ~2.38% organic matter, a total porosity of 47~52% and field capacity 16.2~ 17.2%. The column experiments was made of glass column of 60cm length and 10cm I.D. at controlled temperature of 2$0^{\circ}C$($\pm$2.5$^{\circ}C$). The efficiency of continuous flow rate of 5, 10 and 20$m\ell$/min resulted in separately 61.3%, 58.1%, and 55% reduction of initial TPH concentration(7098mg/kg). Hydrocarbon utilizing microbial count and dehydrogenase activity in air flow of 5$m\ell$/min were higher than those of the others. The first order degradation rate of n-alkanes ranging from C10 to C28 was higher than that of pristane and phytane as isoprenoids. The $C_{17}$/pristane and $C_{18}$phytane ratios for monitoring the degree of biodegradation were useful only during the early stages of oil degradation. Degradation contributed from about 89% to 93% of TPH removal. Volatilization loss of diesel oil in contaminated soil was about 7% to 11%, which was significantly small compared to degradation.n.

  • PDF

Physical remediation of ballast gravels contaminated by oil pollutants (도상자갈 표면 유류 오염물질의 물리적 제거방안 연구)

  • Cho, Young-Min;Lee, Jae-Young;Jung, Woo-Sung;Park, Duck-Shin;Kang, Hae-Sook;Kim, Hee-Man;Lim, Jong-Il
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1386-1391
    • /
    • 2007
  • The ballast gravels are often contaminated by various pollutants, like diesel fuel, lubricants, and heavy metals. Especially, the gravels near the switching are apt to be polluted by the lubricant. Because this lubricant can pollute the soil of track, the contaminated ballast gravels should be cleaned immediately. In this study, a physical desorption method was used to remove the oil contaminants from the surface of the ballast gravels. Thermosetting resin was used as a media for physical remediation of ballast gravels. The total petroleum hydrocarbon of the gravels was monitored over time. In addition, scanning electron microscopic images were obtained to observe the removal of the oily pollutants from the surface of the gravels.

  • PDF

유류 오염 부지에 대한 위해성 평가 -RBCA를 중심으로-

  • 류상민;함세영;정재열;신현무;오방일;김민철
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.370-373
    • /
    • 2002
  • 위해성 평가(Risk assessment)는 지하수나 토양의 오염으로 인해 자연 환경과 사람에게 미칠수 있는 위해(risk)를 정량적으로 평가하는 방법이다. 이 평가를 바탕으로 대상지역의 오염도 저감 여부 및 목표를 설정할 수 있다. 본 연구에서는 유류로 오염된 부지를 대상으로 측정된 TPH(Total Petroleum Hydrocarbon)값에 근거하여 인체에 미칠 수 있는 위해((Risk)에 대한 정량적인 평가와 동시에 오염된 토양 및 지하수의 정화기준을 산정 하고자하였다. 그 결과 유류로 오염된 00지구에 대한 정화기술적용시의 최소성분감소비(CRF)를 산출하여 정화의 정도치와 정화목표농도를 산출하였다.

  • PDF