• Title/Summary/Keyword: Total Heat Release

Search Result 142, Processing Time 0.021 seconds

The Applicable Investigation of Response Surface Methodology(RSM) for the Prediction of the Ignition Time, the Heat Release Rate and the Maximum Flame Height of the Interior Materials (내장재의 발화시간, 열방출율 및 최대화염 높이의 예측을 위한 반응표면방법론의 활용성 고찰)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.20 no.2 s.62
    • /
    • pp.14-20
    • /
    • 2006
  • The aim of this study is to predict the ignition times and the HRR(heat release rate) for building interior materials. By using the literature data and RSM(response surface methodology), the new equations for predicting the ignition time and the HRR of building interior materials are proposed. The A.A.P.E.(average absolute percent error) and the A.A.D.(average absolute deviation) of the reported and the calculated ignition times by means of the thickness and the density were 4.35 sec and 1.57 sec, and the correlation coefficient was 0.987. The correlation coefficient of the reported and the calculated the net HRR by means of burner width and power was 0.983. Also the correlation coefficient of the reported and the calculated the total HHR by means of burner width and power was 0.999. The correlation coefficient of the reported and the calculated the maximum flame height by means of burner width and power was 0.999. The values calculated by the proposed equations were in good agreement with the literature data.

Thermal Properties and Flame Retardancy of Poly(amic acid)/organoclay Nanocomposites (Poly(amic acid)/organoclay 나노복합체의 열적특성 및 난연성)

  • Kim, Sun;Yoon, Doo-Soo;Jo, Byung-Wook;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.42 no.3
    • /
    • pp.177-185
    • /
    • 2007
  • Polyamic acid(PAA)/organoclay nanocomposites containing phosphorous were prepared by solution blending of phosphorylated PAA(PPAA) and organically modified montmorillonite(O-MMT) as a type of layered clays. The nanocomposites were characterized by FT-IR, DSC, TGA, PCFC, SEM, and XRD. The preparation of nanocomposites was confirmed by FT-IR and XRD. SEM pictures showed that the organoclay was dispersed well in the PAA matrix relatively. XRD results indicated that the O-MMT layers were intercalated. The thermal stability and flame retardancy of O-MMT/PPAA nanocomposites were higher than those of pure PAA. PCFC results also showed that the heat release capacity and total heat release values of O-MMT 4 wt%/PPAA-0.2, 0.4, 0.6 composites were decreased with increasing the mole ratio of phosphorous. It was found that the nanocomposite films had the potential to be used as a fire safe material.

A Study on the Mechanical and Combustion Characteristics According to Fiber Reinforcements Weight Fraction of FRTP (섬유강화재 함유율에 따른 FRTP의 기계적 특성 및 연소특성에 관한 연구)

  • Kim, Kyoung-Jin;Eom, Sang-Yong;Kim, Ki-Hwan
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.21-28
    • /
    • 2019
  • To examine the mechanical and combustion characteristics of FRTP, either polycarbonate or nylon were used as a matrix, and either glass fiber or carbon fiber were used as the fiber reinforcement. The fiber reinforcement content was differentiated at 0~40 wt%. The tensile strength and heat distortion temperature increased with increasing reinforcement content. When the fiber reinforcement content was above 30 wt%, the flammability rating showed V-0. As the fiber reinforcement content increased from 0 to 40 wt%, the peak heat release rate of polycarbonate decreased by approximately 51% and that of nylon decreased by approximately 24%. The rate of CO generation decreased for a period of time, and then increased. This appears to have resulted from incomplete combustion. The rate of CO2 generation shows a similar tendency with the heat release rate. As fiber reinforcement content levels increased from 0 to 40 wt%, the CO2 peak rate of polycarbonate generation decreased by approximately 50% and that of nylon decreased by 28%.

Heat Risk Assessment of Wood Coated with Boron/Silicone Sol (붕소/실리콘 졸로 도포된 목재의 열위험성 평가)

  • Jin, Eui;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.9-20
    • /
    • 2019
  • This study was examined fire risk properties of wood specimen for the constructional interiors, especially focusing on the fire performance index (FPI) and the fire growth index (FGI) as heat hazard characteristics. Flame retardants were synthesized using boric acid, boronic acid and tetraethoxyorthosilicate. Heat release characteristics were measured by using a cone calorimeter (ISO 5660-1) and cypress was used. The external heat flux as fire intensity was maintained at 50 kW/㎡. The measured fire performance index (FPI) after burning was increased by 1.6 times for boric acid/silicone (BA/Si) sol, each 1.1 times for isobutylboronic acid/silicone (IBBA/Si) sol and phenylboronic acid/silicone (PBA/Si) sol compared with cypress. Fire risk by the fire performance index was increased BA/Si, IBBA/Si ≈ PBA/Si order. The fire growth index was decreased 94% for the BA/Si and 8% for the IBBA/Si sol, and was increased by 17% for the PBA/Si sol. Fire risk by the fire growth index was increased BA/Si, IBBA/Si, PBA/Si order. Overall fire risk was higher in the order of BA/Si < IBBA/Si < PBA/Si.

Combustion Characteristics of Medium Density Fibreboard (MDF) Painted with Alkylenediaminoalkyl-Bis-Phosphonic Acids (알킬렌디아미노알킬-비스-포스폰산으로 처리된 중밀도섬유판의 연소특성)

  • Park, Myung-Ho;Chung, Yeong-Jin
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.481-486
    • /
    • 2014
  • This study was performed to test combustive properties of medium density fibreboard (MDF) plates treated with piperazinomethyl-bis-phosphonic acid (PIPEABP), methylpiperazinomethyl-bis-phosphonic acid (MPIPEABP), and N,N-dimethylethylenediaminomethyl-bis-phosphonic acid (MDEDAP). MDF specimens were painted three times with 15 wt% solution of the alkylenediaminoalkyl-bis-phosphonic acids at room temperature. After drying specimen treated with chemicals, combustive properties were examined using the cone calorimeter (ISO 5660-1). As a result, combustion-retardation properties increased due to the treatment of bare MDF with alkylenediaminoalkyl-bis-phosphonic acid solution. Especially, the specimens treated with chemicals showed the ignition (TTI) (148 s~116 s) was retarded and the flameout (Tf) (633 s~529 s) time increased, while the total heat release rate (THRR) (61.1~67.0) $MJ/m^2$ was lowered than those of using virgin plate by reducing the burnig rate. Compared with virgin MDF plate, the specimens treated with the alkylenediaminoalkyl-bis-phosphonic acids showed low combustive properties. However the specimens treated with bis-(dimethylaminomethyl) phosphinic acid (DMDP) showed the higher peak heat release rate (PHRR) ($185.08kW/m^2$) than that of the virgin plate.

Combustion Characteristics of Pinus rigida Plates Painted with Alkylenediaminoalkyl-Bis-Phosphonic Acid (Mn+) (알킬렌디아미노알킬-비스-포스폰산 금속염으로 처리된 리기다 소나무 시험편의 연소특성)

  • Jin, Eui;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.70-76
    • /
    • 2013
  • Four kinds of new piperazinomethyl-bis-phosphonic acid $M^{n+}$ ($PIPEABPM^{n+}$) were synthesized and their combustive properties of Pinus rigida plates treated with $PIPEABPM^{n+}$ were tested. Pinus rigida specimens were painted in three times with 15 wt% $PIPEABPM^{n+}$solutions at the room temperature. After drying specimen treated with chemicals, com-bustive properties were examined by the cone calorimeter (ISO 5660-1). As a result, the combustion-retardation proper-ties were increased by due to the treated $PIPEABPM^{n+}$ solutions in the virgin pinus rigida. Especially, the specimens treated with $PIPEABPM^{n+}$ showed both the lower peak heat release rate ($HRR_{peak}$) (162.02~145.36) s and total heat release rate (THRR) (73.0~67.4) $MJ/m^2$ than those of virgin piperazinomethyl-bis-phosphonic acid (PIPEABP)-plate. Compared with virgin PIPEABP-plate, the specimens treated with the $PIPEABPM^{n+}$ showed low combustive properties. However the specimens treated with $PIPEABPM^{n+}$ showed both the shorter time to ignition (TTI) (67~23) s and the time to flameout (Tf) (472~433) s than those of virgin PIPEABP-plate by increasing the thermal conductivity.

Combustive Properties of Pinus rigida Plates Painted with Alkylenediaminoalkyl-Bis-Phosphonic Acid Salts (Mn+) (알킬렌디아미노알킬-비스-포스폰산 금속염으로 처리된 리기다 소나무판의 연소성질)

  • Park, Myung-Ho;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.28-34
    • /
    • 2014
  • Two kinds of new piperazinomethyl-bis-phosphonic acid $M^{n+}$ ($PIPEABPM^{n+}$) were synthesized and their combustive properties of Pinus rigida plates treated with $PIPEABPM^{n+}$ were tested in comparison with the previously synthesized chemicals. Pinus rigida specimens were painted in three times with 15 wt% $PIPEABPM^{n+}$ solutions at the room temperature. After drying specimen treated with chemicals, combustive properties were examined by the cone calorimeter (ISO 5660-1). As a result, the combustion-retardation properties were partially increased by due to the treated $PIPEABPM^{n+}$ solutions in the virgin Pinus rigida. Especially, the specimens treated with $PIPEABPM^{n+}$ showed both the lower peak heat release rate ($HRR_{peak}$) (173.48~145.36) s and total heat release rate (THRR) (73.0~55.2) $MJ/m^2$ than those of virgin piperazinomethyl-bis-phosphonic acid (PIPEABP)-plate. Compared with virgin PIPEABP-plate, the specimens treated with the $PIPEABPM^{n+}$ showed low combustive properties. However the specimens treated with $PIPEABPM^{n+}$ showed both the shorter time to ignition (TTI) (58~18) s and the time to flameout (Tf) (564~456) s than those of virgin PIPEABP-plate by increasing the thermal conductivity.

Combustion Characteristics of Pinus rigida Plates Painted with Alkylenediaminoalkyl-Bis-Phosphonic Acid Derivatives (알킬렌디아미노알킬-비스-포스폰산 유도체로 처리된 리기다 소나무 시험편의 연소특성)

  • Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.27 no.5
    • /
    • pp.57-63
    • /
    • 2013
  • This study was performed to test the combustive properties of Pinus rigida plates treated with piperazinomethyl-bisphosphonic acid (PIPEABP), methylpiperazinomethyl-bis-phosphonic acid (MPIPEABP), and N,N-dimethylethylenediaminomethyl- bis-phosphonic acid (MDEDAP). Pinus rigida specimens were painted in three times with 15 wt% alkylenediaminoalkyl- bis-phosphonic acid solutions at the room temperature. After drying specimen treated with chemicals, combustive properties were examined by the cone calorimeter (ISO 5660-1). As a result, the combustion-retardation properties were increased by due to the treated alkylenediaminoalkyl-bis-phosphonic acid solutios in the virgin Pinus rigida. Especially, the specimens treated with chemicals showed both the later time to ignition (TTI) (148-116 s) and longer time to flameout (Tf) (633-529 s) than those of virgin plate by reducing the burnig rate. Compared with virgin pinus rigida plate, the specimens treated with the alkylenediaminoalkyl-bis-phosphonic acids showed partially low combustive properties. However the specimens treated with PIPEABP showed both the higher peak heat release rate (PHRR) (187.56 $kW/m^2$) and higher total heat release rate (THRR) (75.7 $MJ/m^2$) than those of virgin plate.

Experimental and Theoretical Study on the Effect of Pressure on the Surface Reaction over Platinum Catalyst (백금촉매의 표면반응에 미치는 압력의 영향에 관한 실험 및 이론적 연구)

  • Kim, Hyung-Man
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • Surface reaction occurs at a certain surface temperature when a catalyst is heated up in a reactive mixture. If homogeneous ignition does not occur, a steady state is observed because the heat produced by the surface reaction is balanced with the heat loss caused by convection, conduction and radiation. The present paper treats the effects of pressure on the surface temperature at the steady state. Hydrogen and oxygen are used as reactants and nitrogen as an inert gas. A spherical platinum catalyst of 1.5 mm in diameter is sustained in the chamber with two wires of 0.1 mm in diameter. As results, there exists a maximum steady temperature at a certain relative hydrogen concentration which increases with total pressure. At the steady state, it can be approximated that the heat release is estimated by the mass transfer considering the effect of natural convection. The experimental results are explained qualitatively by the approximation.

  • PDF

Study of Combustion and Emission Characteristics for DI Diesel Engine with a Swirl-Chamber

  • Liu, Yu;Chung, S.S.
    • Journal of ILASS-Korea
    • /
    • v.15 no.3
    • /
    • pp.131-139
    • /
    • 2010
  • Gas motion within the engine cylinder is one of the major factors controlling the fuel-air mixing and combustion processes in diesel engines. In this paper, a special swirl-chamber is designed and applied to a DI (direct injection) diesel engine to generate a strong swirl motion thus enhancing gas motion. Compression, combustion and expansion strokes of this DI diesel engine with the swirl-chamber have been simulated by CFD software. The simulation model was first validated through comparisons with experimental data and then applied to do the simulation of the spray and combustion process. The velocity and temperature field inside the cylinder showed the influences of the strong swirl motion to spray and combustion process in detail. Cylinder pressure, average temperature, heat release rate, total amount of heat release, indicated thermal efficiency, indicated fuel consumption rate and emissions of this DI diesel engine with swirl-chamber have been compared with that of the DI diesel engine with $\omega$-chamber. The conclusions show that the engine with swirlchamber has the characteristics of fast mixture formulation and quick diffusive combustion; its soot emission is 3 times less than that of a $\omega$-chamber engine; its NO emission is 3 times more than that of $\omega$-chamber engine. The results show that the DI diesel engine with the swirl-chamber has the potential to reduce emissions.