• 제목/요약/키워드: Total Harmonic Distortion

검색결과 417건 처리시간 0.022초

조명부하의 중성선 영상전류 저감장치 분석 및 적용에 관한 연구 (A Stduy on the Analysis and Application of Neutral Line Zero Sequence Currents Reduction Device in Lighting Loads)

  • 김경철;이일무;정영호;백승현
    • 조명전기설비학회논문지
    • /
    • 제18권3호
    • /
    • pp.59-64
    • /
    • 2004
  • 현대 사회 전반에 걸쳐 조명설비와 같은 비선형 부하가 증가하여, 중성선에는 많은 고조파 전류가 흐른다. 3상 4선식 배전계통을 채용하는 중성선에 과다한 고조파 전류가 흐르면 여러 가지 고조파 장해를 일으킨다. 중성선 고조파 저감 대책으로 지그재그 변압기를 이용하는 영상 필터가 널리 쓰이고 있다. 본 논문에서는 상용화된 중성선 영상 전류 저감장치를 분석하고, 고조파를 저감시키기 위해서 조명 부하에 적용하고자 한다. 실측한 값과 MATLAB으로 시뮬레이션한 값을 수치와 그래프로 비교해 보았다.

현장시험에 의한 중성선 고조파 전류 측정, 모델링 및 수동필터 적용에 관한 연구 (A Study on the Measurements, Moldeling, and Passive Filter Application of Neutral Hormonic Currents by Field Tests)

  • 김경철;강윤모;이일무
    • 조명전기설비학회논문지
    • /
    • 제17권1호
    • /
    • pp.103-111
    • /
    • 2003
  • 교육용 건물에는 개인용 컴퓨터와 같은 비선형 부하가 증가하여, 중성선에는 많은 고조파 전류가 흐른다. 3상 4선식 배전 계통을 채용하는 중성선에 과다한 고조파 전류가 흐르면 중성선 도체 과열과 보호 시스템의 오동작등 많은 고조파 장해를 일으킨다. 본 논문에서는 현장에서 실측한 고조파 전류와 전압으로 고조파 해석용 3상 등가회로를 구성하였다. 실측한 값과 MATLAB으로 시뮬레이션한 값을 수치와 그래프로 비교 검토 하였다. 또한 중성선 고조파 전류 저감 대책으로 동조 수동 필터를 사례연구 시스템에 적용하여 고조파 저감 효과도 알아 보았다.

Selective Harmonic Elimination for a Single-Phase 13-level TCHB Based Cascaded Multilevel Inverter Using FPGA

  • Halim, Wahidah Abd.;Rahim, Nasrudin Abd.;Azri, Maaspaliza
    • Journal of Power Electronics
    • /
    • 제14권3호
    • /
    • pp.488-498
    • /
    • 2014
  • This paper presents an implementation of selective harmonic elimination (SHE) modulation for a single-phase 13-level transistor-clamped H-bridge (TCHB) based cascaded multilevel inverter. To determine the optimum switching angle of the SHE equations, the Newton-Raphson method is used in solving the transcendental equation describing the fundamental and harmonic components. The proposed SHE scheme used the relationship between the angles and a sinusoidal reference waveform based on voltage-angle equal criteria. The proposed SHE scheme is evaluated through simulation and experimental results. The digital modulator based-SHE scheme using a field-programmable gate array (FPGA) is described and has been implemented on an Altera DE2 board. The proposed SHE is efficient in eliminating the $3^{rd}$, $5^{th}$, $7^{th}$, $9^{th}$ and $11^{th}$ order harmonics, which validates the analytical results. From the results, it can be seen that the adopted 13-level inverter produces a higher quality with a better harmonic profile and sinusoidal shape of the stepped output waveform.

Multi-Function Distributed Generation with Active Power Filter and Reactive Power Compensator

  • Huang, Shengli;Luo, Jianguo
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1855-1865
    • /
    • 2018
  • This paper presents a control strategy for voltage-controlled multi-function distributed generation (DG) combined with an active power filter (APF) and a reactive power compensator. The control strategy is based on droop control. As a result of local nonlinear loads, the voltages of the point of common coupling (PCC) and the currents injecting into the grid by the DG are distorted. The power quality of the PCC voltage can be enhanced by using PCC harmonic compensation. In addition, with the PCC harmonic compensation, the DG offers a low-impedance path for harmonic currents. Therefore, the DG absorbs most of the harmonic currents generated by local loads, and the total harmonic distortion (THD) of the grid connected current is dramatically reduced. Furthermore, by regulating the reactive power of the DG, the magnitude of the PCC voltage can be maintained at its nominal value. The performance of the DG with the proposed control strategy is analyzed by bode diagrams. Finally, simulation and experimental results verify the proposed control strategy.

A Novel Analytical Method for Selective Harmonic Elimination Problem in Five-Level Converters

  • Golshan, Farzad;Abrishamifar, Adib;Arasteh, Mohammad
    • Journal of Power Electronics
    • /
    • 제17권4호
    • /
    • pp.914-922
    • /
    • 2017
  • Multilevel converters have attracted a lot of attention in recent years. The efficiency parameters of a multilevel converter such as the switching losses and total harmonic distortion (THD) mainly depend on the modulation strategy used to control the converter. Among all of the modulation techniques, the selective harmonic elimination (SHE) method is particularly suitable for high-power applications due to its low switching frequency and high quality output voltage. This paper proposes a new expression for the SHE problem in five-level converters. Based on this new expression, a simple analytical method is introduced to determine the feasible modulation index intervals and to calculate the exact value of the switching angles. For each selected harmonic, this method presents three-level or five-level waveforms according to the value of the modulation index. Furthermore, a flowchart is proposed for the real-time implementation of this analytical method, which can be performed by a simple processor and without the need of any lookup table. The performance of the proposed algorithm is evaluated with several simulation and experimental results for a single phase five-level diode-clamped inverter.

계통연계 인버터를 위한 새로운 고조파 보상법 (A Novel Harmonic Compensation Technique for the Grid-Connected Inverters)

  • Ashraf, Muhammad Noman;Khan, Reyyan Ahmad;Choi, Woojin
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 전력전자학술대회
    • /
    • pp.71-73
    • /
    • 2019
  • The output current of the Grid Connected Inverter (GCI) can be polluted with harmonics mainly due to i) dead time in switches, ii) non-linearity of switches, iii) grid harmonics, and iv) DC link fluctuation. Therefore, it is essential to design the robust Harmonic Compensation (HC) technique for the improvement of output current quality and fulfill the IEEE 1547 Total harmonics Distortion (THD) limit i.e. <5%. The conventional harmonic techniques often are complex in implementation due to their i) additional hardware needs, ii) complex structure, iii) difficulty in tuning of parameters, iv) current controller compatibility issues, and v) higher computational burden. In this paper, to eliminate the harmonics from the GCI output current, a novel Digital Lock-In Amplifier (DLA) based harmonic detection is proposed. The advantage of DLA is that it extracts the harmonic information accurately, which is further compensated by means of PI controller in feed forward manner. Moreover, the proposed HC method does not require additional hardware and it works with any current controller reference frame. To show the effectiveness of the proposed HC method a 5kW GCI prototype built in laboratory. The output current THD is achieved less than 5% even with 10% load, which is verified by simulation and experiment.

  • PDF

Distortion Elimination for Buck PFC Converter with Power Factor Improvement

  • Xu, Jiangtao;Zhu, Meng;Yao, Suying
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.10-17
    • /
    • 2015
  • A quasi-constant on-time controlled buck front end in combined discontinuous conduction mode and boundary conduction mode is proposed to improve power factor (PF).When instantaneous AC input voltage is lower than the output bus voltage per period, the buck converter turns into buck-boost converter with the addition of a level comparator to compare input voltage and output voltage. The gate drive voltage is provided by an additional oscillator during distortion time to eliminate the cross-over distortion of the input current. This high PF comes from the avoidance of the input current distortion, thereby enabling energy to be delivered constantly. This paper presents a series analysis of controlling techniques and efficiency, PF, and total harmonic distortion. A comparison in terms of efficiency and PF between the proposed converter and a previous work is performed. The specifications of the converter include the following: input AC voltage is from 90V to 264V, output DC voltage is 80V, and output power is 94W.This converter can achieve PF of 98.74% and efficiency of 97.21% in 220V AC input voltage process.

Study of Harmonic Suppression of Ship Electric Propulsion Systems

  • Wang, Yifei;Yuan, Youxin;Chen, Jing
    • Journal of Power Electronics
    • /
    • 제19권5호
    • /
    • pp.1303-1314
    • /
    • 2019
  • This paper studies the harmonic characteristics of ship electric propulsion systems and their treatment methods. It also adopts effective measures to suppress and prevent ship power systems from affecting ship operation due to the serious damage caused by harmonics. Firstly, the harmonic characteristics of a ship electric propulsion system are reviewed and discussed. Secondly, aiming at problems such as resonant frequency and filter characteristics variations, resonance point migration, and unstable filtering performances in conventional passive filters, a method for fully tuning of a passive dynamic tunable filter (PDTF) is proposed to realize harmonic suppression. Thirdly, to address the problems of the uncontrollable inductance L of traditional air gap iron core reactors and the harmonics of power electronic impedance converters (PEICs), this paper proposes an electromagnetic coupling reactor with impedance transformation and harmonic suppression characteristics (ECRITHS), with the internal filter (IF) designed to suppress the harmonics generated by PEICs. The ECRITHS is characterized by both harmonic suppression and impedance change. Fourthly, the ECRITHS is investigated. This investigation includes the harmonic suppression characteristics and impedance transformation characteristics of the ECRITHS at the fundamental frequency, which shows the good performance of the ECRITHS. Simulation and experimental evaluations of the PDTF are carried out. Multiple PDTFs can be configured to realize multi-order simultaneous dynamic filtering, and can effectively eliminate the current harmonics of ship electric propulsion systems. This is done to reduce the total harmonic distortion (THD) of the supply currents to well below the 5% limit imposed by the IEEE-519 standard. The PDTF also can eliminate harmonic currents in different geographic places by using a low voltage distribution system. Finally, a detailed discussion is presented, with challenges and future implications discussed. The research results are intended to effectively eliminate the harmonics of ship electric power propulsion systems and to improve the power quality of ship power systems. This is of theoretical and practical significance for improving the power quality and power savings of ship power systems.

전동차용 전원장치의 출력전압 제어 안정성 향상 (Stability Improvement of Output Voltage Control on the Power Supply for Railways)

  • 서광덕
    • 조명전기설비학회논문지
    • /
    • 제13권4호
    • /
    • pp.134-141
    • /
    • 1999
  • 본 논문은 전동차량용 전원장치의 출력전압 제어 안정성을 향상시키기 위한 연구이다. 입력전압 변동 및 부하 변동 등 과도상태시 출력 정전압 제어를 수행할 경우, L-C 필터부에서 공진이 발생함으로써 출력전압이 흔들리고 시스템이 불안해진다. 본 논문에서, 출력전압제어의 안정성을 확보하기 위해 주필터부에 공진을 억제하는 댐핑회로를 새롭게 제안하고, 이에 적합한 제어방법을 소개한다. 제안한 댐핑회로는 R-L로서 소형이고 간단히 구성된다. 제어기에는 과도상태분의 궤환제어와 대역저지필터를 적용한다. 또한 전력회로는 3레벨 PWM방식을 적용하였다. 이로서 과도상태에서 출력전압의 흔들림없이 변동폭을 10[%]이하로 제어할 수 있었으며, 정상상태의 출력 전압 왜형율도 3[%]이하로 감소시켰다.

  • PDF

Power Quality Improvement Using Hybrid Passive Filter Configuration for Wind Energy Systems

  • Kececioglu, O. Fatih;Acikgoz, Hakan;Yildiz, Ceyhun;Gani, Ahmet;Sekkeli, Mustafa
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.207-216
    • /
    • 2017
  • Wind energy conversion systems (WECS) which consist of wind turbines with permanent magnet synchronous generator (PMSG) and full-power converters have become widespread in the field of renewable power systems. Generally, conventional diode bridge rectifiers have used to obtain a constant DC bus voltage from output of PMSG based wind generator. In recent years, together advanced power electronics technology, Pulse Width Modulation (PWM) rectifiers have used in WECS. PWM rectifiers are used in many applications thanks to their characteristics such as high power factor and low harmonic distortion. In general, L, LC and LCL-type filter configurations are used in these rectifiers. These filter configurations are not exactly compensate current and voltage harmonics. This study proposes a hybrid passive filter configuration for PWM rectifiers instead of existing filters. The performance of hybrid passive filter was tested via MATLAB/Simulink environment under various operational conditions and was compared with LCL filter structure. In addition, neuro-fuzzy controller (NFC) was preferred to increase the performance of PWM rectifier in DC bus voltage control against disturbances because of its robust and nonlinear structure. The study demonstrates that the hybrid passive filter configuration proposed in this study successfully compensates current and voltage harmonics, and improves total harmonic distortion and true power factor.