• 제목/요약/키워드: Torsional force

검색결과 195건 처리시간 0.028초

A Study on Coupled Vibrations of Diesel Engine Propulsion Shafting (3rd Report : Vibration by Propeller Exciting and its Countermeasure) (디젤기관 추진 축계의 연성진동에 관한 연구 (제3보 : 프로펠러 기진에 의한 진동과 그 대책))

  • 전효중;이돈출;김의간;김정렬
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 한국마린엔지니어링학회 2001년도 춘계학술대회 논문집
    • /
    • pp.173-179
    • /
    • 2001
  • The torsional or axial critical vibration of the order coinciding with the number of propeller blades is simultaneously excited by the harmonic tangential or radial forces acting on the crank shaft and by the harmonic of the same order from the propeller. The exciting torque of propeller is relatively small comparing with that of crank side, but the exciting force of propeller rather larger than that of crank shaft. With this situation, the exciting force of propeller cannot neglect if the axial vibration of propulsion shafting is calculated. With the propeller in its optimal angular position, i.e. its excitation effect opposed to that of the engine, the stresses at the critical revolution will largely cancel themselves out. In this paper, a method of optimizing the angular propeller position with regard to torsional and axial vibration is studied. The optimal relative angle is determined theoretically by calculation results of coupled torsional-axial vibration.

  • PDF

Physical Properties or Jujube (Zizyphus jujuba miller) and Jujube Branches (대추 및 대추가지의 물리적 특성)

  • 민경선;이상우;허윤근;서정덕;맹성렬
    • Journal of Biosystems Engineering
    • /
    • 제27권4호
    • /
    • pp.283-292
    • /
    • 2002
  • Mechanical and physical properties of various parts of jujube (Zizyphus jojoba Miller) such as fruits, leaves, secondary branches, and leafy stems were measured and analyzed. The physical dimensions of the fruits were measured using a digital caliper, and the detachment force of the fruit and leafy stems was measured using a force gauge. The physical characteristics of the secondary branches such as the modulus of elasticity and the torsional rigidity were tested using a universal testing machine (UTM). The physical characteristics of leafy stems such as length and weight were also measured using a digital caliper and a digital scale, respectively. The detachment force of leafy stems and the area of the leaf also measured. The terminal velocities of the jujube fruits, leaves, and leafy stems were measured using a custom made terminal velocity experiment system. Diameter of the major and minor axis of the jujube fruit, weight of the fruit, and detachment force of the fruit stem was average of 32.02 mm, 23.92 mm. 10.0 ${\times}$ 10$\^$6/ ㎥, 8.99 g, and 5.43 N. respectively. The detachment forces of the jujube fruits increased and the force-to-weight ratio of the jujube fruits decreased as the weight of the jujube fruits increased. The modulus of elasticity of the secondary branches of the jujube was average of 7.01 ${\times}$ 10$\^$8/ N/㎡ and decreased as diameter of the secondary branches increased. The average torsional rigidity of the secondary jujube branches was 5.2 ${\times}$ 10$\^$-/ N/㎡, and the torsional rigidity decreased as the secondary branch diameter increased. The distribution of the torsional rigidity data associated with the diameter of the branches, however. widely scattered and it was difficult to find any relationship between the diameter of the branches and the torsional rigidity of tile branches. The weight of the leafy stems, number of loaves attached to the leafy stems, diameter of the stem side of the leafy stems, diameter of the leafy stem end was average or 0.7 g, 6.6 ea, 12.2 cm, 4.5 mm, and 2.7 mm, respectively. The major and minor axis of the .jujube loaves, area of leaves, weight of the leaves. and detachment force of the leaves was average of 5.7 cm, 3.3 cm, 12.98 cm$^2$, 0.20 g, and 4.39 N, respectively. The terminal velocity of the .jujube fruits increased as the weight of the fruits increased. The terminal velocity of the leafy stems, however, did not show a relationship with the weight of the leafy stems and the number of leaves attached to the leafy stem. The terminal velocity, however, slightly increased as the length of the leafy stems increased.

Analysis of three dimensional equivalent static wind loads of symmetric high-rise buildings based on wind tunnel tests

  • Liang, Shuguo;Zou, Lianghao;Wang, Dahai;Huang, Guoqing
    • Wind and Structures
    • /
    • 제19권5호
    • /
    • pp.565-583
    • /
    • 2014
  • Using synchronous surface pressures from the wind tunnel test, the three dimensional wind load models of high-rise buildings are established. Furthermore, the internal force responses of symmetric high-rise buildings in along-wind, across-wind and torsional directions are evaluated based on mode acceleration method, which expresses the restoring force as the summation of quasi-static force and inertia force components. Accordingly the calculation methods of equivalent static wind loads, in which the contributions of the higher modes can be considered, of symmetric high-rise buildings in along-wind, across-wind and torsional directions are deduced based on internal forces equivalence. Finally the equivalent static wind loads of an actual symmetric high-rise building are obtained by this method, and compared with the along-wind equivalent static wind loads obtained by China National Standard.

A Study on Failure Analysis of Low Pressure Turbine Blade Subject to Fatigue Load (피로하중을 받은 저압 터빈 블레이드의 파손해석에 관한 연구)

  • 홍순혁;이동우;조석수;주원식
    • Journal of Welding and Joining
    • /
    • 제19권3호
    • /
    • pp.298-304
    • /
    • 2001
  • Turbine blade is subject to force of three types ; the torsional force by torsional mount, the centrifugal force by the rotation of rotor and the cyclic bending force by steam pressure. The cyclic bending force was a main factor on fatigue strength. SEM fractography in root of turbine blade showed micro-clack width was not dependent on stress intensity factor range. Especially, fatigue did not exist on SEM photograph in root of turbine blade. To clear out the fracture mechanism of turbine blade, nanofractography was needed on 3-dimensional crack initiation and crack growth with high magnification. Fatigue striation partially existed on AFM photograph in root of turbine blade. Therefore, to find a fracture mechanism of the torsion-mounted blade in nuclear power plant, the relation between stress intensity factor range and surface roughness measured by AFM was estimated, and then the load amplitude ΔP applied to turbine blade was predicted exactly by root mean square roughness.

  • PDF

Experimental investigation of characteristics of torsional wind loads on rectangular tall buildings

  • Li, Yi;Zhang, J.W.;Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • 제49권1호
    • /
    • pp.129-145
    • /
    • 2014
  • In order to investigate the characteristics of torsional wind loads on rectangular tall buildings, five models with different rectangular cross-sections were tested in a boundary wind tunnel. Based on the test results, the RMS force coefficients, power spectrum densities as well as vertical correlation functions of torsional wind loads were analyzed. Formulas that took the side ratio as parameters were proposed to fit the test results above. Comparisons between the results calculated by the formulas and the wind tunnel measurements were made to verify the reliability of the proposed formulas. An simplified expression to evaluate the dynamic torsional wind loads on rectangular tall buildings in urban terrain is presented on basis of the above formulas and has been proved by a practical project. The simplified expressions as well as the proposed formulas can be applied to estimate wind-induce torsional response on rectangular tall buildings in the frequency domain.

Torsional strength model of reinforced concrete members subjected to combined loads

  • Ju, Hyunjin;Lee, Deuckhang;Zhang, Wei;Wang, Lei
    • Computers and Concrete
    • /
    • 제29권 5호
    • /
    • pp.285-301
    • /
    • 2022
  • This study aims at developing a torsional strength model based on a nonlinear analysis method presented in the previous studies. To this end, flexural neutral axis depth of a reinforced concrete section and effective thickness of an idealized thin-walled tube were formulated based on reasonable approximations. In addition, various sectional force components, such as shear, flexure, axial compression, and torsional moment, were considered in estimating torsional strength by addressing a simple and linear strain profile. Existing test results were collected from literature for verifications by comparing with those estimated from the proposed model. On this basis, it can be confirmed that the proposed model can evaluate the torsional strength of RC members subjected to combined loads with a good level of accuracy, and it also well captured inter-related mechanisms between shear, bending moment, axial compression, and torsion.

Torsional Vibration Analysis of a Spur Gear Pair with the Variable Mesh Stiffness (기어이의 변동물림강성을 고려한 비틀림진동해석)

  • Ryu, Jae-Wan;Han, Dong-Chul;Choi, Sang-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제16권12호
    • /
    • pp.99-108
    • /
    • 1999
  • A four-degree-of-freedom non-linear model with time varying mesh stiffness has been developed for the dynamic analysis of spur gear trains. The model includes a spur gear pair, two shafts, two inertias representing load and prime mover. In the model, developed several factors such as time varying mesh stiffness and damping, separation of teeth, teeth collision, various gear errors and profile modifications have been considered. Two computer programs are developed to calculate stiffness of a gear pair and transmission error and the dynamic analysis of modeled system using time integration method. Dynamic tooth and mesh forces, dynamic factors are calculated. Numerical examples have been given, which shows the time varying mesh stiffness ha a significant effect upon the dynamic tooth force and torsional vibrations.

  • PDF

Control of Torsional Vibration using Uneven Crank Angels on the Shafting for Diesel Power Plant (부등간격 크랭크 배치각에 의한 디젤 발전소 축계의 비틀림진동 제어)

  • 이돈출;유정대;김정렬
    • Journal of KSNVE
    • /
    • 제10권4호
    • /
    • pp.655-661
    • /
    • 2000
  • Diesel power plant can be used as a power supplier for the isolated place where consumption of electric power is variable. The reason is that mobility and durability of diesel engine is superior to those of other thermal engines. However, there are some disadvantages for using these diesel engines such as bigger vibratory excitation force comparing to the others, which result from high combustion pressure of cylinders and inertia force of piston reciprocating masses. In this paper, control and optimization of torsional vibration of 12K90MC-S engine for diesel power plant using uneven crank angles is identified by theoretical analysis and vibration measurement.

  • PDF

Evaluation of Internal Bracing Member Forces due to Distortional Behaviors of Tub Section Steel Box Girders (U형 강박스 거더의 뒤틀림 거동에 의한 내부 수직브레이싱 부재력 평가)

  • Kim, Kyung-Sik
    • Journal of Korean Society of Steel Construction
    • /
    • 제23권2호
    • /
    • pp.249-259
    • /
    • 2011
  • In this study, the distortional behaviors of tub-section steel girders subjected to torsional loading were analyzed, and predictor equations were developed for estimating the member forces induced in the internal bracing system installed in the steel tub girders. Torsional loadings originated either by eccentric vertical loading or girder curvature were decomposed into the pure torsional force component that does not affect the distortional box deformation, and into the distortional force component that directly induces box distortion. The axial member forces induced in the internal cross frames were formulated as a function of the magnitude of torsional loading through the analytical investigation of the interactions between the distortional force component and internal cross frames. To verify the proposed equations, three-dimensional finite element analysis (3D FEA) was conducted for the straight simple-span girder and the three-span continuous girder samples. Very good agreement was found between the member forces from the FEA and the proposed equations.

Force Field Parameters for 3-Nitrotyrosine and 6-Nitrotryptophan

  • Myung, Yoo-Chan;Han, Sang-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권9호
    • /
    • pp.2581-2587
    • /
    • 2010
  • Nitration of tyrosine and tryptophan residues is common in cells under nitrative stress. However, physiological consequences of protein nitration are not well characterized on a molecular level due to limited availability of the 3D structures of nitrated proteins. Molecular dynamics (MD) simulation can be an alternative tool to probe the structural perturbations induced by nitration. In this study we developed molecular mechanics parameters for 3-nitrotyrosine (NIY) and 6-nitrotryptophan (NIW) that are compatible with the AMBER-99 force field. Partial atomic charges were derived by using a multi-conformational restrained electrostatic potential (RESP) methodology that included the geometry optimized structures of both $\alpha$- and $\beta$-conformers of a capped tripeptide ACE-NIY-NME or ACE-NIW-NME. Force constants for bonds and angles were adopted from the generalized AMBER force field. Torsional force constants for the proper dihedral C-C-N-O and improper dihedral C-O-N-O of the nitro group in NIY were determined by fitting the torsional energy profiles obtained from quantum mechanical (QM) geometry optimization with those from molecular mechanical (MM) energy minimization. Force field parameters obtained for NIY were transferable to NIW so that they reproduced the QM torsional energy profiles of ACE-NIW-NME accurately. Moreover, the QM optimized structures of the tripeptides containing NIY and NIW were almost identical to the corresponding structures obtained from MM energy minimization, attesting the validity of the current parameter set. Molecular dynamics simulations of thioredoxin nitrated at the single tyrosine and tryptophan yielded well-behaved trajectories suggesting that the parameters are suitable for molecular dynamics simulations of a nitrated protein.