• Title/Summary/Keyword: Torsional Fatigue

Search Result 92, Processing Time 0.027 seconds

Prediction of Biaxial Strength and Fatigue Life using the Concept of Equivalent Strength (등가강도 개념에 의한 탄소섬유 복합재료의 이축강도 및 피로수명 예측)

  • 이창수;황운봉
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.53-61
    • /
    • 1999
  • A failure criterion must be considered in each failure mode and loading condition to provide easy determining strength parameters, flexibility and rational simplicity. In this study, new failure criterion was developed by introducing equivalent strength under biaxial loading of tension and torsion. The experimental results showed that the equivalent biaxial strength has a power law relation with respect to a parameter, cos($tan^{-1}R_b$). Failure strength under biaxial loadings could be predicted as a function of tensile strength, torsional strength and biaxial ratio. The scattering of experimental data could be predicted using a Weibull distribution function and the concept of equivalent biaxial strength. Also, in this study, a fatigue theory was developed based on a plane stress model which enabled the S-N curve for combined stress states to be predicted from the S-N data for uniaxial loading. The prediction models can be predicted a biaxial strength and fatigue life of general laminated composite naterials under multi-axial loadings.

  • PDF

A Convergence Study by Structural Analysis on Torsion Beam Suspension of Rear Wheel (후륜 토션빔 서스펜션에 대한 구조해석에 의한 융합연구)

  • Choi, Gye-Gwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.9
    • /
    • pp.187-192
    • /
    • 2019
  • In this study, the structural and fatigue analyses were carried out according to the configuration of rear wheel suspension of torsion beam. Three types of models similar to the actual torsional beam suspension are analyzed and we will find out which one is best on strength. The models of torsion beam suspension were designed in three types of models A, B and C through CATIA program and the results of structural and fatigue analyses were obtained by using the ANSYS program. We will confirm which model is better structurally than other models. According to the analysis results, the deformation happens to be the largest in the middle, and model B has the least deformation compared to model A and C. Similarly, model B is shown to have the smallest result at equivalent stress. So, model B is judged to be the best in terms of its strength, and it is thought to be the most efficient to converge into art design at the suspension design with a torsion beam of rear wheel.

A Study on Bending and Torsion Characteristics and Weight Optimization by Web Shape of Crankshaft for Diesel Engine (디젤 엔진의 Crankshaft Web 형상에 따른 굽힘 및 비틀림 특성과 중량 최적화에 관한 연구)

  • Kim, Jang-Su;Lee, Chi-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.14 no.2
    • /
    • pp.67-72
    • /
    • 2011
  • Recently, it is possible for small sized and high speed diesel engines by development of commonrail system. And in order to increase the engine performance, the cylinder firing pressure is a tendency which increases. On the other side, the weight of engine becomes lightly in spit of high performance diesel engine. Therefore, the weight optimization for engine components is very important point on the design process. Also, the weight optimization must necessarily be considered the robust design against a fatigue failure. This paper focuses on the weight optimization of crankshaft according to web shape at the light duty diesel engine, and torsion characteristics of crankshaft is considered with 1D and 3D analysis tools.

A Study on the Strength Analysis of Crankshaft for 4 Stroke Marine Diesel Engine (선박용 4행정 디젤엔진의 크랭크축 강도해석에 관한 연구)

  • Lee, D.C.;Kang, D.S.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.359-368
    • /
    • 2006
  • The trend on marine diesel engine productions and refinements has led to a higher mean effective pressure and thermal efficiency. These resulted in increased maximum combustion pressure within the cylinder and vibratory torque in crankshaft. In view of this. the crankshaft should be able to withstand the dynamic stresses caused by load variations. Different factors including size, material and stress concentration factors should also be considered to ensure the reliability of the shafting system. As such, crankshaft must be designed and compacted within its fatigue strength. In this paper, the strength analysis of crankshaft Is carried out by: simplified method recommended by IACS(International Association Classification Societies) M53 and a detailed method with the crankshaft assumed as a continuous beam and bearing supported in its flexibility. The results of these two methods are then compared.

The analysis on the shape of a Standard Test Specimen for the Torsion Test and The Effects of Misalignments (비틀림 시험에 대한 표준시험시편 형상 및 축 정렬 이상 영향 분석)

  • Kim, Ju-Hee;Kim, Yun-Jae;Park, Chi-Yong;Heo, Yong-Hak;Je, Jin-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.155-160
    • /
    • 2008
  • Using a three-dimensional (3-D) FE analyses, this paper provides the shape optimization of the standard test specimen for the torsion test, as well as a method for analyzing effects of misalignment under the angular and concentric misalignment. For verification, FE analysis is performed, which is designed for the perfectly full-model. To optimize the design shape of the torsion-controlled fatigue test specimen, we performed sensitivity analysis using shape parameters. Additionally, two kinds of misalignment (angular misalignment and concentric misalignment) are applied to the circular and tubular specimens to show effects of misalignments in the FE analysis. The present results will provide valuable information for designing shafts for every kind of mechanical system under torsional force.

  • PDF

A Study on Fracture Mechanism of Torsion-Mounted Type Turbine Blade (비틀림 마운트형 터빈 블레이드의 파괴기구에 관한 연구)

  • Hong, Soon-Hyeok;Lee, Dong-Woo;Jang, Deuk-Yul;Cho, Seoks-Woo;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.585-590
    • /
    • 2001
  • Turbine blade is subject to torsional load by torsion-mount, centrifugal load by rotation of rotor and repeated bending load by steam pressure. Turbine with partially cracked blade has normal working condition at initial repair time but vibratory working condition at middle repair time due to crack growth. Finite element analysis on turbine blade indicates that repeated bending load out of all loads is the most important factor on fatigue strength of turbine blade. Therefore, this study shows root mean square roughness has linear relation with stress intensity factor range in 12% Cr steel and can predict loading condition of fractured turbine blade.

  • PDF

A Study on Failure Analysis of Turbine Blade Using Surface Roughness and FEM (표면거칠기와 유한요소법을 이용한 터빈 블레이드의 파손해석에 관한 연구)

  • 홍순혁;이동우;이선봉;조석수;주원식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.170-177
    • /
    • 2001
  • Turbine blade is subject to torsional load by torsion-mount, centrifugal load by rotation of rotor and repeated bending load by steam pressure. Turbine with partially cracked blade has normal working condition at initial repair time but vibratory working condition at middle repair time due to crack growth. Finite element analysis on turbine blade indicates that repeated bending load out of all loads is the most important factor on fatigue strength of turbine blade. Therefore, this study shows root mean square roughness has linear relation with stress intensity factor range in 12% Cr steel and can predict loading condition of fractured turbine blade.

  • PDF

A Study on the Strength Analysis of Crankshaft for 4 Stroke Marine Diesel Engine (선박용 4행정 디젤엔진의 크랭크축 강도해석에 관한 연구)

  • Lee, D.C.;Park, S.H.;Kang, D.S.;Kim, T.U.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.66-72
    • /
    • 2006
  • Marine diesel engine production and refinements sought a continuous increase on mean effective pressure and thermal efficiency. These results in increased maximum combustion pressure within the cylinder and vibratory torque in crankshaft. As such, crankshaft should be designed and compacted within its fatigue strength. In this paper, the 8H25/33P($3,155ps{\times}900rpm$) engine for ship propulsion was selected as a case study, and tile strength analysis of its crankshaft is carried out by. simplified method recommended by IACS M53 and a detailed method with the crankshaft assumed as a continuous beam and bearing supported in its flexibility. The results of these two methods are compared with each other.

  • PDF

Development of a Ultrasound Probe for 3-D Ultrasonic Imaging (3차원 의료기기용 초음파진단기 프로브 개발)

  • Park, Jong-Soo;Kim, Seong-Rae;Nam, Yoon-Su
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.87-93
    • /
    • 2005
  • Three-dimensional ultrasonic probes being applied to the medical imaging can be grouped into three depending on the scanning methods, which are a mechanical type system, a free-hand system, and 2D phased arrays system. A mechanical type scanner uses a mechanically driven transducer to acquire series of 2D plane images. By integrating these images, a 3-D medical image can be constructed. A motor driving mechanism is a conventional choice for mechanically driving a transducer assembly which picks the raw ultrasonic images up. In this paper we attempt to design a 3D ultrasonic probe which has a operating mechanism of s tilting 3-D scanning. The motion of a transducer assembly of the ultrasonic probe is analytically modelled. We propose a selection procedure for the diameter of a wire rope driving the transducer assembly and the size of torsional spring which gives an initial tension to wire ropes.

  • PDF

Rotatory Vertebral Artery Syndrome in Foramen Magnum Stenosis (대공협착에서 발생한 회전척추동맥증후군)

  • Jung, Ileok;Jung, Jin-Man;Park, Moon Ho
    • Research in Vestibular Science
    • /
    • v.17 no.4
    • /
    • pp.167-169
    • /
    • 2018
  • Rotatory vertebral artery syndrome (RVAS) is characterized by recurrent attacks of vertigo, nystagmus, and syncope induced by compression of the vertebral artery during head rotation. A 60-year-old man with atlas vertebrae fracture presented recurrent attacks of positional vertigo. Left-beat, upbeat and count clock-wise torsional nystagmus occurred after lying down and bilateral head roll (HR) showing no latency or fatigue. Magnetic resonance imaging revealed foramen magnum stenosis (FMS) and dominancy of right vertebral artery (VA). The flow of the right VA on transcranial Doppler decreased significantly during left HR. The slower the velocity was, the more the nystagmus was aggravated. RVAS can be evoked by FMS causing compression of the VA. And the nystagmus might be aggravated according to the blood flow insufficiency.