• 제목/요약/키워드: Torque-Angle Relationship

검색결과 36건 처리시간 0.028초

Torque-Angle-Based Direct Torque Control for Interior Permanent-Magnet Synchronous Motor Drivers in Electric Vehicles

  • Qiu, Xin;Huang, Wenxin;Bu, Feifei
    • Journal of Power Electronics
    • /
    • 제13권6호
    • /
    • pp.964-974
    • /
    • 2013
  • A modified direct torque control (DTC) method based on torque angle is proposed for interior permanent-magnet synchronous motor (IPMSM) drivers used in electric vehicles (EVs). Given the close relationship between torque and torque angle, proper voltage vectors are selected by the proposed DTC method to change the torque angle rapidly and regulate the torque quickly. The amplitude and angle of the voltage vectors are determined by the torque loop and stator flux-linkage loop, respectively, with the help of the position of the stator flux linkage. Furthermore, to satisfy the torque performance request of EVs, the nonlinear dead-time of the invertor caused by parasitic capacitances is considered and compensated to improve steady torque performance. The stable operation region of the IPMSM DTC driver for voltage and current limits is investigated for reliability. The experimental results prove that the proposed DTC has good torque performance with a brief control structure.

신장성 수축 운동에 의한 인체 하지 전경골근의 족배굴곡 토크-발목 각도 특성 변화 (Effects of Eccentric Exercise on Torque-Angle Relationship of Human Tibialis anterior In-vivo)

  • 이해동;김승재;야수오카와카미
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1575-1579
    • /
    • 2008
  • The purpose of this study was to investigate how maximum-effort eccentric exercise over different contraction ranges affects the characteristics of torque-angle relationship of human ankle plantarflexor in-vivo. Subjects were randomly assigned in two groups. One group (n=6) performed 120 maximum-effort eccentric ankle dorsiflexion contractions at short muscle length (ankle range of motion from -5 to 15 deg) and the other group (n=6) at long (ankle range of motion from 10 to 30 deg) muscle length. Eccentric exercise decreased the maximum isometric ankle plantarflexion torque ${\sim}40%$. It was found that the optimum ankle joint angle changed from 7.5 deg to 11.1 deg and 10.1 deg, shifted toward the longer muscle length, regardless of the exercise range. The results of this study suggest that eccentric exercise alters the characteristics of torqueangle relationship of the muscle but there is no differential effect of the eccentric contraction range.

  • PDF

An approximate method for aerodynamic optimization of horizontal axis wind turbine blades

  • Ying Zhang;Liang Li;Long Wang;Weidong Zhu;Yinghui Li;Jianqiang Wu
    • Wind and Structures
    • /
    • 제38권5호
    • /
    • pp.341-354
    • /
    • 2024
  • This paper presents a theoretical method to deal with the aerodynamic performance and pitch optimization of the horizontal axis wind turbine blades at low wind speeds. By considering a blade element, the functional relationship among the angle of attack, pitch angle, rotational speed of the blade, and wind speed is derived in consideration of a quasi-steady aerodynamic model, and aerodynamic loads on the blade element are then obtained. The torque and torque coefficient of the blade are derived by using integration. A polynomial approximation is applied to functions of the lift and drag coefficients for the symmetric and asymmetric airfoils respectively, where specific expressions of aerodynamic loads as functions of the angle of attack (which is a function of pitch angle) are obtained. The pitch optimization problem is investigated by considering the maximum value problem of the instantaneous torque of a blade as a function of pitch angle. Dynamic pitch laws for HAWT blades with either symmetric or asymmetric airfoils are derived. Influences of parameters including inflow ratio, rotational speed, azimuth, and wind speed on torque coefficient and optimal pith angle are discussed.

위상각제어에 의한 단상유도전동기의 속도제어 (Speed Control for Single Phase Induction Motor Using Phase Angle)

  • 임영철;김광헌;최찬학;나석환;정영국;장영학;장학충
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제9권5호
    • /
    • pp.41-50
    • /
    • 1995
  • Single-phase induction motors are widely used in many light duty applications, especially in home and office. many applications which use these motors require adjustable speed control continuously. In general, the speed control of single-phase induction motor is accomplished at a few discrete speeds by using tapped-windings, pole switching or gear. These techniques are inefficient and complicated. In this paper, Torque controller which adjusts a generating torque using phase difference between main winding voltage and auxiliary winding voltage is proposed. The analysis includes the determination of the relationship between the auxiliary winding voltage is proposed. The analysis includes the determination of the relationship between the auxiliary winding voltage phase angle and torque. Simulation results of the torque-speed characteristics using the controlled auxiliary winding supply are shown and discussed. and the drive is tested experimentally to verify the results of the theory by using a dynamometer.

  • PDF

태권도 선수와 일반인의 등척성 무릎신전 토크-각도 관계 특성 비교 분석 (Comparison of Isometric Knee Extension Torque-Angle Relationship between Taekwondo Athletes and Normal Adults)

  • 조계훈;오정훈;이해동
    • 한국운동역학회지
    • /
    • 제25권3호
    • /
    • pp.275-281
    • /
    • 2015
  • Objective : In order for Taekwondo athletes to perform destructive kicking performance, they are expected to have Taekwondo-specific muscle properties such as high muscle strength and power. The purpose of this study was to investigate the joint angle-dependent force-producing property of Taekwondo athletes' knee extensor muscles, which is one of the primary muscle groups involved in kicking performance. Method : Ten Taekwondo male athletes (age: $19.9{\pm}0.7yrs$, height: $180.6{\pm}6.2cm$, body mass: $75.9{\pm}8.9kg$, career: $9.2{\pm}2.9yrs$.) and 10 healthy male non-athletes (age: $26.3{\pm}2.6yrs$, height: $174.2{\pm}4.8cm$, body mass: $72.8{\pm}7.7kg$) participated in this study. Subjects performed maximum isometric knee extension at knee joint angles of $40^{\circ}$, $60^{\circ}$, $80^{\circ}$, and $100^{\circ}$ (the full knee extension was set to $0^{\circ}$) with the hip joint angles of $0^{\circ}$ and $80^{\circ}$ (the full extension was set to $0^{\circ}$). During the contractions, knee extension torque using an isokinetic dynamometer simultaneously with muscle activities of the rectus femoris (RF), and the vastus lateralis (VL) and vastus medialis (VM) using surface electromyography were recorded. Based on the torque values at systematically different knee-hip joint angles, the joint torque-angle relationships were established and then the optimal joint angle for the knee extensor was estimated. Results : The results of this study showed that the isometric knee extension torque values were greater for the Taekwondo athletes compared with the non-athlete group at all hip-knee joint angle combinations (p<.05). When the hip joint was set at $80^{\circ}$, the peak isometric torque was greater for the Taekwondo athletes compared with the non-athlete group ($313.61{\pm}36.79Nm$ and $221.43{\pm}35.92Nm$, respectively; p<.05) but the estimated optimum knee joint angles were similar ($62.33{\pm}5.71^{\circ}$ and $62.30{\pm}4.67^{\circ}$ for the Taekwondo athletes and non-athlete group, respectively). When the hip joint was set at $0^{\circ}$, the peak isometric torque was greater for the Taekwondo athletes compared with the non-athlete group ($296.29{\pm}45.13Nm$ and $199.58{\pm}25.23Nm$, respectively; p<.05) and the estimated optimum knee joint angle was larger for the Taekwondo athletes compared with the non-athlete group ($78.47{\pm}5.14^{\circ}$ and $67.54{\pm}5.77^{\circ}$, respectively; p<.05). Conclusion : The results of this study suggests that, compared with non-athletes, Taekwondo athletes have stronger knee extensor strength at all hip-knee joint angle combinations as well as longer optimum muscle length, which might be optimized for the event-specific required performance through prolonged training period.

트랙터의 조타력 특성에 관한 실험적 연구 (Experimental Study on Steering Torque Characteristics of Tractor)

  • 이상식;강진석;문정환;이충호;홍종호;박원엽
    • Journal of Biosystems Engineering
    • /
    • 제35권4호
    • /
    • pp.231-238
    • /
    • 2010
  • The purpose of this paper was to investigate experimentally the steering torque characteristics of a tractor operated in various ground conditions. The experiments were conducted with the tractor reconstructed for steering torque test of the tractor at two different off-road conditions (ground-I and ground-II) and a on-road condition (ground-III), three different levels of tire inflation pressures (69 kPa, 138 kPa and 207 kPa), and four different levels of axle loads (4120 N, 4730 N, 5340 N and 5950 N). The results of this study are summarized as follows: 1) The steering torque was increased with the increase in steering angle for all experimental levels of ground conditions, axle loads and inflation pressures of tire. 2) As the axle load increased, the steering torque of the tractor increased for all ground conditions, and the increasing rate of the steering torque with the increase of axle load was greater at on-road than at off-road. 3) As the tire inflation pressure decreased, the steering torque increased. Also the increasing tendency of the steering torque with decreasing the tire inflation pressure showed that the harder the ground was, the larger the effect was. But for the soft ground condition, ground-I, no specific trend with inflation pressures was found. 4) Steering angle-steering torque relationship with ground conditions showed that the increasing rate of the steering torque was greater at on-road than off-road for small steering angle under 10 degree, and was greater at off-road than on-road for large steering angles over 10 degree.

SRM의 최대 토크 운전을 위한 자기동조 제어 (Maximum Torque Operation of SRM by using a Self-tuning Control Method)

  • 서종윤;김광헌;장도현
    • 전력전자학회논문지
    • /
    • 제9권3호
    • /
    • pp.240-245
    • /
    • 2004
  • 본 연구에서는 SRM의 최대 토크 운전을 위한 자기동조 제어방법을 연구하였다. SRM은 비선형적인 특성이 강하여 해석적인 방법으로 특성을 고찰하거나 속도 및 토크 제어가 어려운 단점이 있다. 따라서 본 논문에서는 최대 토크 운전을 위한 적절한 턴-온/오프각 제어를 자기동조방식(self-tuning method)에 의해 결정하는 방식을 제안하였다. 그리고 턴-온/오프각을 제어하기 위해 귀환되는 신호는 각각 엔코더 펄스수와 상전류의 증분값을 사용하였으며, 운전 중에 스스로 적절한 턴-오프각을 먼저 추종하고 다음으로 턴-온각을 추종하게 된다. 턴-온/오프각은 서로 종속적인 관계에 있으므로 최대 토크 값을 유지하기 위한 턴-온/오프각을 실시간 자기동조방식으로 제어하였으며, 실험을 통해 제안된 방식이 타당함을 확인하였다.

A New Approach to Direct Torque Control for Induction Motor Drive Using Amplitude and Angle of the Stator Flux Control

  • Kumsuwan, Yuttana;Premrudeepreechacharn, Suttichai;Toliyat, Hamid A.
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권1호
    • /
    • pp.79-87
    • /
    • 2008
  • This paper proposes the design and implementation of a direct torque controlled induction motor drive system. The method is based on control of decoupling between amplitude and angle of reference stator flux for determining reference stator voltage vector in generating PWM output voltage for induction motors. The objective is to reduce electromagnetic torque ripple and stator flux droop which result in a decrease in current distortion in steady state condition. In addition, the proposed technique provides simplicity of a control system. The direct torque control is based on the relationship between instantaneous slip angular frequency and rotor angular frequency in adjustment of the reference stator flux angle. The amplitude of the reference stator flux is always kept constant at rated value. Experimental results are illustrated in this paper confirming the capability of the proposed system in regards to such issues as torque and stator flux response, stator phase current distortion both in dynamic and steady state with load variation, and low speed operation.

보조권선의 전력제어에 따른 단상유도전동기의 특성비교 (A Characteristics of SPIM with Power Conversions of Auxiliary Winding)

  • 박수강;서강성;백형래;조금배;임양수;이성길;김동휘
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.1149-1151
    • /
    • 2002
  • In this paper, an auxiliary winding driving system of single-phase induction motors is described. Starting charateristics variations are obtained by controlling the auxiliary winding voltage magnitude and phase angle, while the motor's main winding is directly connected to the local utility. A variable auxiliary winding voltage phase angle is shown to yield significant torque control, providing starting and braking torque. The analysis includes the determination of the relationship between the auxiliary winding voltage phase angle and the phase angle difference between the main and auxiliary winding current. The paper proposed for adjusting an auxiliary winding voltage magnitude and phase angle. Experimental results of motor's starting characteristics with using the DC-AMP and PWM inverter for auxiliary winding power supply are shown. The drive is tested using a dynamometer to experimentally verify the results of the theory.

  • PDF

A Study on the Adjustment Method of Bicycle Shoe Cleat for Bicycle Fitting System

  • Shon, Gyoung-Hoan
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권5호
    • /
    • pp.93-102
    • /
    • 2019
  • The nation's fraternity and elite players who have built up a global bicycle infrastructure often find it to be a problem with the bicycle's speed and speed reduction, pain in knees and hip joints, or even with the bike itself, or with the bike's own physical defects or a riding posture. However, we found that most cases of cleat adjustment errors were likely to be true. Accurate adjustment of the cleats is the most important of the entire fitting process and can be the basis for improving the ability of the bicycle rider and preventing injury. Therefore, the study was intended to give a prior study of bicycle fitting, which can improve bicycle efficiency and prevent injury when riding bicycle, and specific ways of adjusting bicycle shoe cleats, and the following results were obtained. First, the cleat characteristics of Shimano, LOOK and Speedplay, which are currently used in public, and the characteristics during the cleat adjustment process, were derived. In addition, the structure and characteristics of dedicated shoes using cleats and the method of using pedalling by the structure of shoes after adjusting the cleats were derived. Second, the position of the shoe and its relationship with torque in pedalling was discussed, and the method of adjusting front and back of cleats was derived. Third, leg length, ASIS, Q-Angle and Q-factor etc. were analyzed and the method of setting and adjusting cleat left and right values were derived. Fourth, the relationship between walking angle and cleat rotation was analyzed, the method was derived, and the torque size and angle behind the cleat adjustment were compared and analyzed using the spinner to indicate the torque and the effective mean torque angle after the cleat adjustment.