• 제목/요약/키워드: Torque controller

검색결과 988건 처리시간 0.027초

원추형 연결 임플란트에서 지대주 종류에 따른 나사풀림과 침하현상에 관한 연구 (Effect of various abutment systems on the removal torque and the abutment settling in the conical connection implant systems)

  • 이진선;이준석
    • 대한치과보철학회지
    • /
    • 제50권2호
    • /
    • pp.92-98
    • /
    • 2012
  • 연구 목적: 본 연구 목적은 서로 다른 재료로 제작된 지대주를 이용하여 동적하중을 가했을 때 풀림토크와 침하량에 대한 임플란트-지대주 연결부의 안정성에 대하여 알아보는 것이다. 연구 재료 및 방법: 원추형 내부연결 구조를 갖는 임플란트에 이용되는 세 가지 지대주, 티타늄 합금 지대주(Cement abutment, Osstem Co., Seoul, Korea), 귀금속 UCLA 지대주(UCLA Goldcast abutment, Osstem Co., Seoul, Korea), 비귀금속 UCLA 지대주(CCM Metalcast abutment, 3M ESPE, Seefeld, Germany)를 사용하였다. 귀금속 UCLA 지대주와 비귀금속 UCLA 지대주를 티타늄 지대주와 유사한 형태로 납형을 형성 한 후 각각 제 3형 금합금(E-3, Heesung catalyst Co., Seoul, Korea)와 니켈-크롬 합금인(Rexillium $III^{(R)}$, $Pentron^{(R)}$, San Diego, USA)를 사용하여 주조 하였다. 임플란트와 지대주를 디지털 토크 컨트롤러를 이용하여 30 N cm로 체결하였고 전하중 상실을 보상하기 위하여 10분 후 다시 같은 힘으로 체결 하였다. 디지털 토크 게이지를 사용하여 풀림토크를 측정하였고 디지털 마이크로미터를 이용하여 임플란트/지대주 길이를 측정하였다. 그 후 동적 하중 피로 시험기에 지대주를 장착한 후 최대 250 N, 최소 25 N, 주기 14 HZ의 sine형의 하중을 장축과 평행하게 가하였다. 하중 후 임플란트/지대주의 길이를 재측정 하고, 전후 길이변화량을 이용하여 침하량을 계산하였으며 풀림토크를 측정하였다. 결과: 하중 전후의 길이를 비교하였을 때 세 군 모두에서 유의한 차이를 보였다($P$<.05). 군 간의 침하량을 비교하였을 때 통계적으로 유의한 차이를 보이지는 않았다. 하중 전후의 풀림토크를 비교하였을 때 역시 세 군 모두에서 유의한 차이를 보이며 감소하였다 ($P$<.05). 하중 전 풀림토크와 하중 후 풀림토크를 군간 비교하였을 경우에는 통계적으로 유의한 차이를 보이지는 않았다. 결론: 원추형 내부 연결구조를 갖는 임플란트에서 동적하중은 임플란트의 침하량과 풀림토크에 영향을 미치는 것으로 보이나 지대주간 차이는 나타나지 않았다. 비귀금속UCLA 지대주이 사용은 귀금속 UCLA 지대주와 마찬가지로 기능적 하중에서 안정적일 것으로 사료된다.

Linerly Graded Encoder for High Resolution Angle Control of SRM Drive

  • Lee, Sang-Hun;Lim, Heon-Ho;Park, Sung-Jun;Ahn, Jin-Woo;Kim, Cheul-U
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제11B권4호
    • /
    • pp.185-192
    • /
    • 2001
  • In SRM drive, the ON·OFF angles of each phase switch should be accurately controlled in order to control the torque and speed stably. The accuracy of the switching angles is dependent upon the resolution of the encoder and the sampling period of the microprocessor, that are used to provide the information of the rotor position and to control the SRM power circuit, respectively. However, as the speed increases, the amount of the switching angle deviation from the preset values is also increased. Therefore, the low cost encoder suitable for the practical and stable SRM drive is proposed and the control algorithm to provide the switching signals using the simple digital logic circuit is also presented in this paper, As a result, a stable high speed SRM drive can be achieved by the high resolution switching angle control and it is verified from the experiments that the proposed encoder the logic controller can be a powerful candidate for the practical low cost SRM drive.

  • PDF

대형 회전구조물의 정밀위치제어에 관한 연구 (A Study on Position Control for Large Inertia System)

  • 최영호;어진우;이대식
    • 한국정밀공학회지
    • /
    • 제2권1호
    • /
    • pp.72-81
    • /
    • 1985
  • This paper deals with the Z-8000 microprocessor based optimal controller problem of large rotating system. Control algorithm consists of Global Mode and Fine Mode. In Global Mode, motor is driven with maximum torque, while, in Fine Mode, the speed of response and overshoot improved by multi-gains. Friction term of the plant was measured in the 1-st test, jerking effect by the nonlinearity of friction was compensated in the 2-nd test and the 3-rd test was carried out to finalize the control system model. Test results show that the speed of response and overshoot are highly improved.

  • PDF

개별 블레이드 피치 제어 방식을 이용한 수직축 풍력발전기의 성능 해석 및 시스템 구현 (Aerodynamic Analysis and System Implementation of Vertical Axis Wind Turbine using Individual Blade Pitch Control Method)

  • 정인오;이윤한;황인성;김승조
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3347-3352
    • /
    • 2007
  • This paper describes a research for the performance improvement of the straight-bladed vertical axis wind turbine. To improve the performance of VAWT, the individual blade pitch control method is adopted. For the wind turbine, CFD analysis is carried out by changing blade pitch angle according to the change of wind speed and wind direction. By this method, capacity and power efficiency of VAWT are obtained according to the wind speed and rotating of rotor, and could predict the overall performance of VAWT. It was manufactured to verify performance of the experimental system that consists of rotor including four blades and base. Furthermore, torque sensor and power generator were installed. Also, active controller which can change the pitch angle of the individual blade according to the wind speed and direction was used.

  • PDF

Observer Based Sensorless Rorce Control of Robot Manipulator

  • Suh, Il-Hong;Eom, Kwang-Sik;Lee, Chang-Eun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.803-806
    • /
    • 1997
  • In this paper, a force estimation method is proposed for the sensorless force control. For this, a disturbance observer is applied to each joint of an n degrees of freedom manipulator to obtain a simple equivalent robot dynamics(SERD) being represented as an n independent double integrator system. To estimate the output of disturbance observer in the absence of external force, the observer estimator is designed, where the uncertain parameters of the robot manipulator are adjusted by gradient method to minimize the output between the disturbance observer and the observer estimator. When the external force is exerted, the external force is estimated using the difference between the output of disturbance observer which include the external torque signal and that of observer estimator. And then, a force controller is designed for force feedback control employing the estimated force signal. To verify the effectiveness of the proposed force estimation method, several numerical examples are illustrated for the 2-axis planar type robot manipulator.

  • PDF

쌍롤형 박판주조기의 모델링과 적응최적제어 (Modeling and adaptive optimal control of a twin roll strip caster)

  • 김성훈;홍금식;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.325-328
    • /
    • 1997
  • In this paper the modeling and control of a twin roll strip caster is investigated. Mathematical models for the strip casting process are obtained by analyzing five critical areas such that the molten steel level in the pool, solidification process, roll separating force and torque, roll dynamics including hydraulic actuators, and roll drive system. A two-level control strategy is proposed. At lower level, three local subsystems are independently feedback-controlled by suitable local controllers which perform well to the behaviors of each subsystem. They are a variable structure control of the molten steel level in the pool, an adaptive predictive control of the roll gap which is directly related to the strip thickness, and an $H^{\infty}$ control of the roll drive system. At higher level, all reference signals to the lower level subsystems are generated by an optimal controller in the perspective of regulating the strip thickness and roll separating force. Simulations are provided..

  • PDF

Energy Optimization of a Biped Robot for Walking a Staircase Using Genetic Algorithms

  • Jeon, Kweon-Soo;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.215-219
    • /
    • 2003
  • In this paper, we generate a trajectory minimized the energy gait of a biped robot for walking a staircase using genetic algorithms and apply to the computed torque controller for the stable dynamic biped locomotion. In the saggital plane, a 6 degree of freedom biped robot that model consists of seven links is used. In order to minimize the total energy efficiency, the Real-Coded Genetic Algorithm (RCGA) is used. Operators of genetic algorithms are composed of a reproduction, crossover and mutation. In order to approximate the walking gait, the each joint angle is defined as a 4-th order polynomial of which coefficients are chromosomes. Constraints are divided into equality and inequality. Firstly, equality constraints consist of position conditions at the end of stride period and each joint angle and angular velocity condition for periodic walking. On the other hand, inequality constraints include the knee joint conditions, the zero moment point conditions for the x-direction and the tip conditions of swing leg during the period of a stride for walking a staircase.

  • PDF

근전도 신호를 이용한 무릎 착용 로봇시스템 (Knee-wearable Robot System Using EMG signals)

  • 차경호;강수정;최영진
    • 제어로봇시스템학회논문지
    • /
    • 제15권3호
    • /
    • pp.286-292
    • /
    • 2009
  • This paper proposes a knee-wearable robot system for assisting the muscle power of human knee by processing EMG (Electromyogram) signals. Although there are many muscles affecting the knee joint motion, the rectus femoris and biceps femoris among them play a core role in the extension and flexion motion, respectively, of the knee joint. The proposed knee-wearable robot system consists of three parts; the sensor for measuring and processing EMG signals, controller for estimating and applying the required knee torque, and actuator for driving the knee-wearable mechanism. Ultimately, we suggest the motion control method for knee-wearable robot system by processing the EMG signals of corresponding two muscles in this paper. Also, we show the effectiveness of the proposed knee-wearable robot system through the experimental results.

Comparison of Voltage Oriented Control and Direct Power Control under Command Mode Transition for PMSG Wind Turbines

  • Kwon, Gookmin;Suh, Yongsug
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.173-174
    • /
    • 2016
  • This paper proposes a comparison of Voltage Oriented Control (VOC) and Direct Power Control (DPC) under command mode transition for PMSG Wind Turbines (WT). Based on a neutral point clamped three level back to back type Voltage Source Converter (VSC), proposed control scheme automatically control the generated output power to satisfy a grid requirement from the hierarchical wind farm controller. Automatic command mode transition based on the dc-link voltage error provides a command mode changing between grid command and MPPT mode. It is confirmed through PLECS simulations in Matlab. Simulation result shows that proposed control scheme of VOC and DPC achieves a much shorter transient time of generated output power than the conventional control scheme of MPPT with optimal torque control and VOC under a step response. The proposed control scheme makes it possible to provide a good dynamic performance for PMSG wind turbines in order to generate a high quality output power.

  • PDF

Control of Humanoid Robots Using Time-Delay-Estimation and Fuzzy Logic Systems

  • Ahn, Doo Sung
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권1호
    • /
    • pp.44-50
    • /
    • 2020
  • For the requirement of accurate tracking control and the safety of physical human-robot interaction, torque control is basically desirable for humanoid robots. Because of the complexity of humanoid robot dynamics, the TDC (time-delay control) is practical because it does not require a dynamic model. However, there occurs a considerable error due to discontinuous non-linearities. To solve this problem, the TDC-FLC (fuzzy logic compensator) is applied to humanoid robots. The applied controller contains three factors: a TDE (time-delay estimation) factor, a desired error dynamic factor, and FLC to suppress the TDE error. The TDC-FLC is easy to execute because it does not require complicated humanoid dynamic calculations and the heuristic fuzzy control rules are intuitive. TDC-FLC is implemented on the whole body of a humanoid, not on biped legs even though it is performed by a virtual humanoid robot. The simulation results show the validity of the TDC-FLC for humanoid robots.