• Title/Summary/Keyword: Torque coefficient

Search Result 268, Processing Time 0.023 seconds

Anti-Slip Control for Wheeled Robot Based on Disturbance Observer (외란 관측기를 이용한 이동 로봇의 슬립 제어)

  • Kwon, Sun-Ku;Huh, Uk-Youl;Kim, Jin-Whan;Kim, Hak-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.50-52
    • /
    • 2004
  • Mobility of an indoor wheeled robot is affected by adhesion force that is related to various floor conditions. When the adhesion force between driving wheels and the floor decreases suddenly, the robot has slip state. First of all, this paper models adhesion characteristics and slip in wheeled robot. Secondly, the paper proposes estimation method of adhesion force coefficient according to slip velocity. In oder to overcome this slip problem, optimal slip velocity must be decided for stable movement of wheeled robot. The paper proposes an anti-slip control system based on an ordinary disturbance observer, that is, the anti-slip control is achieved by reducing the driving torque enough to give maximum adhesion force coefficient. These procedure is implemented using a Pioneer 2-DXE parameter.

  • PDF

Development of Internal Friction Model in Automotive Constant Velocity Joints (자동차용 등속 조인트의 내부 마찰 모델 개발)

  • Lee, Chul-Hee;Jang, Min-Gyu
    • Tribology and Lubricants
    • /
    • v.24 no.5
    • /
    • pp.215-220
    • /
    • 2008
  • An internal friction model was developed to model the frictional behavior of automotive Constant Velocity (CV) joints by using the test data from an instrumented CV joint friction apparatus with actual driveshaft assemblies. Experiments were conduced under different realistic operating conditions of oscillatory speeds, CV joint articulation angles, lubrication, and torque. The experimental data were used to develop a physics-based semi-empirical CV joint internal friction coefficient model as a function of different CV Joint operating parameters. It was found that the proposed friction model captures the experimental results well not only the static behavior of friction coefficient, but also the dynamic friction terms, which is the main source of force that causes vehicle vibration problems.

Development of Theoretical Formulae for Calculation of Required Torque in Roll-up Type Ventilation System (권취식 창개폐시스템의 소요토크모델 개발)

  • 박규식;이기명;정석현
    • Journal of Bio-Environment Control
    • /
    • v.6 no.3
    • /
    • pp.133-142
    • /
    • 1997
  • Most of the greenhouses employ the roll-up type ventilation control system. Torque required to roll-up and down might be theoretically expressed with the weight times radius of the ventilation roll; however, measured torques were two times of the theoretically estimated values. As the window film of roll-up vent is used over the periods of time, the warping and crumpling of the material caused the increase of the torque in addition to a span deformation. Therefore, this study was performed to develop an empirical torque formulae to present basic torque data and to assist the development of roll-up type ventilation control system. The empirically adjusted rolling radius (r+a) exponentially increased at the maximum span deformation. The coefficient of rolling resistance (Cr) was about 0.7―0.8 depending upon the wrinkle status of film material.

  • PDF

Experimental study on the performance of urban small vertical wind turbine with different types (도시형 소형 수직축 풍력 발전기의 형태별 성능에 대한 실험적 고찰)

  • Kang, Deok-Hun;Shin, Won-Sik;Lee, Jang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.64-68
    • /
    • 2014
  • This paper is intended to provide experimental data for the design of the small VAWT(vertical axis wind turbine). Three types(lift, drag, and hybrid) of the blade of VAWT are tested with digital wind tunnel in this study. From the test, the relation of power coefficient and tip speed ratio for the blades are evaluated and compared each other depending on the blade type. Especially, the characteristics of hybrid blade which is shown to be expanded in the market without any logical data is proposed in the relation of power coefficient and tip speed ratio. It is shown that the hybrid blade can be used to make higher starting torque with trade off of degradation of power coefficient.

Development of the 3-D Bulk Motion Index for In-Cylinder Flow Induced by Induction System (II) - Based on the Steady Flow Rig Test Results - (흡기시스템을 통해 실린더로 유도되는 공기의 3차원 Bulk Motion Index 개발 (II) - 정상유동실험결과를 중심으로 -)

  • Yun, Jeong-Eui;Nam, Hyeon-Sik;Kim, Myung-Hwan;Min, Sun-Ki;Park, Pyeong-Wan;Kim, Ki-Seong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1066-1073
    • /
    • 2006
  • Recently, because the variable induction systems are adopted to intake system, in-cylinder flow induced by induction system is very complex. Therefore it is very difficult to describe the in-cylinder bulk flow characteristics using the conventional swirl or tumble coefficient. In this study, in order to clarify the 3-D angular flow characteristics of in-cylinder bulk motion in the developing process of variable induction system, we introduced the new 3-D angular flow index, angular flow coefficient($N_B$) Finally, to confirm the index, we carried out the steady flow rig test for intake port of test engine varying valve lift on the test matrix.

A Study on the Flow Characteristics and Engine Performance with Swirl Ratio Variance of Intake Port (흡기포트 선회비 변경에 따른 유동특성 및 엔진성능에 관한 연구)

  • Yoon, Jun-Kyu;Cha, Kyung-Ok
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.899-905
    • /
    • 2000
  • The characteristics of air flow and engine performance with swirl ratio variance of intake port In a turbocharged DI diesel engine was studied in this paper. The intake port flow is important factor which have influence on the engine performance and exhaust emission because the properties in the injected fuel depend on the combustion characteristics. The swirl ratio for ports was modified by hand-working and measured by impulse swirl meter. For the effects on performance and emission, the brake torque and brake specific fuel consumption were measured by engine dynamometer and NOx, smoke were measured by gas analyzer and smoke meter. As a result of steady flow test, when the valve eccentricity ratio are closed to cylinder wall, the flow coefficient and swirl intensity are increased. And as the swirl ratio is increased, the mean flow coefficient is decreasing, whereas the gulf factor is increasing. Also, through engine test its can be expected to meet performance and emission by optimizing the main parameters; the swirl ratio of intake port, injection timing and compression ratio.

  • PDF

Online Estimation of Rotational Inertia of an Excavator Based on Recursive Least Squares with Multiple Forgetting

  • Oh, Kwangseok;Yi, Kyong Su;Seo, Jaho;Kim, Yongrae;Lee, Geunho
    • Journal of Drive and Control
    • /
    • v.14 no.3
    • /
    • pp.40-49
    • /
    • 2017
  • This study presents an online estimation of an excavator's rotational inertia by using recursive least square with forgetting. It is difficult to measure rotational inertia in real systems. Against this background, online estimation of rotational inertia is essential for improving safety and automation of construction equipment such as excavators because changes in inertial parameter impact dynamic characteristics. Regarding an excavator, rotational inertia for swing motion may change significantly according to working posture and digging conditions. Hence, rotational inertia estimation by predicting swing motion is critical for enhancing working safety and automation. Swing velocity and damping coefficient were used for rotational inertia estimation in this study. Updating rules are proposed for enhancing convergence performance by using the damping coefficient and forgetting factors. The proposed estimation algorithm uses three forgetting factors to estimate time-varying rotational inertia, damping coefficient, and torque with different variation rates. Rotational inertia in a typical working scenario was considered for reasonable performance evaluation. Three simulations were conducted by considering several digging conditions. Presented estimation results reveal the proposed estimation scheme is effective for estimating varying rotational inertia of the excavator.

A Study on the New 3-D Angular Flow Index for Evaluation of In-Cylinder Bulk Flow Characteristics of the Air Induced by Variable Induction System (가변 흡기시스템에 의해 유도되는 흡입공기의 유동특성 평가를 위한 새로운 3차원 회전유동 지수에 관한 연구)

  • Yun, Jeong-Eui;Nam, Hyeon-Sik;Kim, Myung-Hwan;Min, Sun-Ki;Sim, Dae-Gon;Park, Pyeong-Wan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.99-105
    • /
    • 2007
  • It is very important to clarify the 3-D angular flow characteristics of in-cylinder bulk motion in the developing process of variable induction system. In-cylinder flow induced by variable induction system is very complex, so we can not describe the in-cylinder bulk flow characteristics using the conventional swirl or tumble coefficient. In this study, we introduced the new 3-D angular flow index, angular flow coefficient($N_B$), for in-cylinder bulk flow characteristics. And also, to confirm the index, we carried out the steady flow rig test for intake port of test engine varying valve lift on the test matrix.

Study on the Aerodynamic Performance of a Cross-Flow Fan for the Various Design Factors of an Indoor Room Air-Conditioner (룸에어콘 실내기의 설계인자 변화에 따른 관류홴의 공력성능 연구)

  • Kim, J.K.;Jeong, K.J.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.33-38
    • /
    • 2005
  • The aerodynamic performance of a cross-flow fan is strongly influenced by the various design factors of a rear-guider and a stabilizer. The purpose of this paper is to investigate the effects of a rear-guider and a stabilizer on the aerodynamic performance of a cross-flow fan. The design factors considered in this paper are a rear-guider clearance, a stabilizer clearance, and a stabilizer setup angle, respectively. This experiment was carried out with a constant revolution number of 700 rpm in a cross-flow fan installed in the fan tester. The static pressure, flowrate, torque, and revolution number were measured in this paper. Also, the pressure coefficient and the efficiency were analysed according to the various assembly conditions using a stabilizer setup angle, a stabilizer clearance, and a rear-guider clearance in the indoor room air-conditioner.

  • PDF

Thermal Analysis of Ballscrew Systems by Explicit Finite Difference Method (현시적 유한차분법을 이용한 볼나사 시스템의 열해석)

  • Min, Bog-Ki;Park, Chun-Hong;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.41-51
    • /
    • 2016
  • Friction generated from balls and grooves incurs temperature rise in the ballscrew system. Thermal deformation due to the heat degrades positioning accuracy of the feed drive system. To compensate for the thermal error, accurate prediction of the temperature distribution is required first. In this paper, to predict the temperature distribution according to the rotational speed, solid and hollow cylinders are applied for analysis of the ballscrew shaft and nut, respectively. Boundary conditions such as the convective heat transfer coefficient, friction torque, and thermal contact conductance (TCC) between balls and grooves are formulated according to operating and fabrication conditions of the ballscrew. Explicit FDM (finite difference method) is studied for development of a temperature prediction simulator. Its effectiveness is verified through numerical analysis.