• Title/Summary/Keyword: Torque Variation

Search Result 523, Processing Time 0.028 seconds

Muscle-Induced Accelerations of Body Segments (근육의 힘이 신체 각 부분의 가속도에 미치는 영향)

  • Khang, Gon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1967-1974
    • /
    • 1991
  • When the functional electrical stimulation is employed to recover mobility to the plegic, it is very important to understand functions of the selected muscles. I have investigated how a muscle acts to accelerate the body segments, since the body segements are connected by joints so that contraction of a muscle not only rotates the segments to which it is attached but also causes other segments to rotate by creation a reaction force at every joint, which is called the inertial coupling. I found that a single-joint muscle always acts to accelerate the spanned joint in the same direction as the joint torque produced by the muscle. However, a double-joint muscle can act to accelerate the spanned joint in the opposite direction to the joint torque produced by the muscle depending on (1) the body position, (2) the body-segmental parameters, and (3) the type of the movement. Investigating the condition number of the inertia matrix of the body-segmental model gave us some insights into how controllable the body-segmental system is for different values of the factors mentioned above. The results suggested that the upright position is the most undesirable position to independently control the three segments(trunk, thigh and shank) and that the controllability is the most sensitive to variation of the shank length and the trunk mass, which implies that accuracy is required particularly when we estimate these two body-segmental parameters before the paralyzed muscles are innervated by using electrical stimulation.

A Study on Wind Load Variation Characteristics of Wind Turbine Gearbox (풍력발전기 증속기에 전달되는 풍하중 변동특성 연구)

  • Kim, Jung-Su;Lee, Hyoung-Woo;Park, No-Gill;Lee, Dong-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.267-275
    • /
    • 2012
  • In this study, normal wind load and blast wind load are modeled mathematical. And the periodical torque and bending moments transmitted to the main shaft of wind turbine are investigated. A normal wind model assumed, of which the wind velocity is increased according to the height from ground. The average values and the harmonic terms of the transmitted moments are studied on the wind direction of range $-45^{\circ}{\sim}45^{\circ}$ and the bending moment characteristics are examined, which is regarded as the main source of the misalignment of gear train. In normal wind load case, excitation frequency is 3X (X : Rotor speed). When the wind direction is $+22.5^{\circ}$, the horizontal axis of bending moment occur the 50% of main torque. This result leads to edge contact of gear teeth by shaft elastic deformation. In blast wind load case, excitation frequency are 3X,6X,9X. Additional, in the (+) direction of wind load, relative harmonic percentage is increase.

Axial magnetic gear with a closed magnetic path (자기 폐회로를 갖는 축형 마그네틱 기어)

  • Jung, Kwang Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.726-733
    • /
    • 2017
  • A magnetic shutter gear is a device that transfers mechanical power by synchronizing the magnetic field between permanent magnet layers facing circumferentially through a harmonic modulator. However, magnetic gears uses many rare-earth permanent magnets to guarantee comparable torque density to that of mechanical reducer. Hence, we propose a novel axial magnetic gear with a dramatically reduced number of permanent magnets and a closed magnetic path. The torque of the system was compared to that of an existing shutter gear through a harmonic analysis of the air-gap magnetic field. The modulator thickness and open ratio were considered as the primary design parameters, and the cogging effect was analyzed for variation of the reduction ratio. A dynamic model between the high-speed side and low-speed side was derived, and position control was performed for a constructed hardware implementation.

A Study on Calculating Inductance Characteristics of Switched Reluctance Motor (스위치드 리럭턴스 전동기의 인덕터스 산정에 관한 연구)

  • 최경호;김동희;노채균;김민희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.333-340
    • /
    • 2001
  • This paper presents a calculating method for inductance of the Switched Reluctance Motor(SRM) for torque characteristics and driving by analytical model. The torque generating characteristics of the SRM depend on the phase current and the inductance variation features, but Its nonlinear magnetic characteristics make it difficult to calculating inductance. Recently, The approaches for calculating inductance have taken vary from detailed finite element method(FEM) and Fitting method in magnetization curves using complex nonlinear magnetic circuit models. But those methods have not satisfactory approach for machine performance calculations, because of having a long time and remodeling for analyses, therefore thus an alternative approach is required. So it is suggested simply calculating method of the inductance based on designed data of machinery by analytical model in unaligned and aligned rotor. In order to prove the calculating, there are compare with analytical FEM. direct measurement, this method, and simulation. The compared result is shown to obtain good accuracy.

  • PDF

Fit of Fixture/Abutment/Screw Interface of Internal Connection Implant Systems (수종의 내측연결 임플랜트 시스템에서 고정체-지대주-나사계면의 적합에 관한 연구)

  • Shim, Deok-Bo;Kim, Hee-Jung;Oh, Sang-Ho;Chung, Chae-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.3
    • /
    • pp.283-298
    • /
    • 2008
  • The purpose of this study was to evaluate mechanical fit of fixture- abutment-screw interface in the internal connection implant systems. In this study, each two randomly selected internal implant fixture- abutment assemblys from Certain, Xive, Replace, Ankylos, SS II. were used. The implants were perpendicularly mounted in liquid unsaturated polyester by use of dental surveyor. Each abutment was connected to the implant with recommended torque value using a torque controller. All samples were cross-sectioned with grinder-polisher unit after embeded in liquid unsaturated polyester, and then fixture-abutment-screw interfaces of all samples by using optical microscope and scanning electron microscope were analyzed. Conclusively, although a little variation in machining accuracy and consistency was noted in the samples, important features of all internal connection systems were the deep, internal fixture-abutment connections which provides intimate contact with the implant walls to resist micromovement, resulting in a strong stable interface.

Study on the Clamping Force and the Friction Coefficient in a Bolt tightened up to the Plastic Range (소성역체결 볼트의 체결력과 마찰계수에 관한 연구)

  • 손승요;신근하
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.133-141
    • /
    • 1994
  • When a bolt is tightened up to the range of plastic deformation, yielding may be governed by the combined stresses due to the axial force developed in the bolt and the frictional torque induced on the thread by the contact with the nut. Consideration is taken account of the fact that the unengaged portion of the thread has least sectional area, being subject to initial yielding. Once yielding has taken place some strain hardening effect may result. Incremental stress-strain relations are used to treat the continued yielding, which is equivalent to treat continued yielding as if summing up the effects of thin walled cylinders subject to plastic deformation. M10 bolts of fine threads are used for both computational and experimental purposes. Variation of axial forces and frictional torques vs. the frictional coefficients are presented together with other plots showing some characterist of bolt under plastic deformation. Finally, a design and control aid for the tightening(i.e., kind of nomograph) is presented, showing the relationships among the torque factor and frictional coefficients for that particular bolt used in the experiment.

  • PDF

Wind tunnel tests of 3D wind loads on tall buildings based on torsional motion-induced vibrations

  • Zou, Lianghao;Xu, Guoji;Cai, C.S.;Liang, Shuguo
    • Wind and Structures
    • /
    • v.23 no.3
    • /
    • pp.231-251
    • /
    • 2016
  • This paper presents the experimental results of the wind tunnel tests for three symmetric, rectangular, tall building models on a typical open terrain considering the torsional motion-induced vibrations. The time histories of the wind pressure on these models under different reduced wind speeds and torsional amplitudes are obtained through the multiple point synchronous scanning pressure technique. Thereafter, the characteristics of both the Root Mean Square (RMS) coefficients and the spectra of the base shear/torque in the along-wind, across-wind, and torsional directions, respectively, are discussed. The results show that the RMS coefficients of the base shear/torque vary in the three directions with both the reduced wind speeds and the torsional vibration amplitudes. The variation of the RMS coefficients in the along-wind direction results mainly from the change of the aerodynamic forces, but sometimes from aeroelastic effects induced by torsional vibration. However, the variations of the RMS coefficients in the across-wind and torsional directions are caused by more equal weights of both the aerodynamic forces and the aeroelastic effects. As such, for the typical tall buildings, the modification of the aerodynamic forces in the along-wind, across-wind, and torsional directions, respectively, and the aeroelastic effects in the across-wind and torsional directions should be considered. It is identified that the torsional vibration amplitudes and the reduced wind speeds are two significant parameters for the aerodynamic forces on the structures in the three directions.

Experimental Study on Ventilation and Shaft Excitation Force of a Propeller in Partially Submerged Condition (부분 침수 조건에서 작동하는 프로펠러의 공기유입과 축계 기진력에 대한 실험적 연구)

  • Ha, Jeongsoo;Seo, Jeonghwa;Park, Gyukpo;Park, Jongyeol;Rhee, Shin Hyung;Yoo, Jaehoon;Park, Suyeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.1
    • /
    • pp.40-48
    • /
    • 2021
  • Through a series of bollard pull tests of a propeller in partially submerged condition, thrust, torque, and shaft excitation force of a conventional propeller model were measured using a six-component load cell. By variation of the Weber number and Reynolds number, a consistent towing tank model test condition was derived. The effects of propeller immersion depth on the ventilation behavior and change of force and moment acting onto the propeller shaft were investigated. The decrease in thrust owing to the inception of ventilation was confirmed, and a large degree of dispersion of the thrust and torque coefficients were also observed in the transition region where the blade tip was under the water surface. The shaft excitation force was derived from the force and moment onto the propeller shaft.

Investigation on ground displacements induced by excavation of overlapping twin shield tunnels

  • Qi, Weiqiang;Yang, Zhiyong;Jiang, Yusheng;Yang, Xing;Shao, Xiaokang;An, Hongbin
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.531-546
    • /
    • 2022
  • Ground displacements caused by the construction of overlapping twin shield tunnels with small turning radius are complex, especially under special geological conditions of construction. To investigate the ground displacements caused due to shield machines in the unique calcareous sand layers in Israel for the first time and determine the main factors affecting the ground displacements, field monitoring, laboratory geological analysis, theoretical calculations, and parameter studies were adopted. By using rod extensometers, inclinometers, total stations, and automatic segment-displacement monitors, subsurface tunneling-induced displacement, surface settlement, and displacement of the down-track tunnel segments caused by the construction of an up-track tunnel were analyzed. The up-track tunnel and the down-track tunnel pass through different stratum, resulting in different construction parameters and ground displacements. The laws of variation of thrust and torque, soil pressure in the chamber, excavated soil quantity, synchronous grouting pressure, and grout volume of the two tunnels from parallel to fully overlapping orientations were compared. The thrust and torque of the shield in the fine sand are larger than those in the Kurkar layer, and the grouting amount in fine sand is unstable. According to fuzzy statistics and Gaussian curve fitting of the shield tunneling speed, the tunneling speed in the Kurkar stratum is twice that in the fine-sand stratum.

Speed Sensorless Vector Control of Wound Induction Motor Using a MRAS Method (MRAS 기법을 이용한 권선형 유도전동기의 속도센서리스 벡터제어)

  • Choi, Hyun-Sik;Lee, Jae-Hak;Um, Tae-Wook
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.1
    • /
    • pp.29-34
    • /
    • 2005
  • The wound induction motor can provide high starting torque and reduced starting current simultaneously by inserting large resistor externally when starting. And this technique is one of the well known methods among the induction motor starting methods and generally used for heavy load starting such as crane and cement factories. The conventional PI controller has been widely used in industrial application due to the simple control algorithm and is generally used for control of current torque, position, and speed for the wound induction motor drive system. However, the conventional control system for wound induction motor may result in poor performance because sensors have to be used but are often limited by the environmental condition. Recently, to overcome these problems, many sensorless vector control methods for the wound induction motor have been studied. This paper presents a MRAS method for sensorless vector control of the wound induction motor drive. In the conventional MRAS method, in low frequency, the stator resistance variation may result in poor performance. Therefore, this paper presents a MRAS method with stator and rotor resistance tuning for sensorless vector control of the wound induction motor to overcome several shortages of the conventional MRAS caused by parameter variation and to enhance the robustness of the sensorless vector control. The validity and effectiveness of the proposed method is verified through digital simulation.