• Title/Summary/Keyword: Torque Equilibrium

Search Result 40, Processing Time 0.028 seconds

An Analysis on Volumetric Displacement of Hydraulic Gerotor Motor (제로터 유압 모터의 용량에 관한 연구)

  • Kim, D.M.;Ham, Y.B.;Kim, S.D.
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.39-43
    • /
    • 2010
  • It is hard and complex to analytically derive a volumetric displacement formula of a gerotor hydraulic motor because geometric shape of its rotors is complicate. An analytical method about the volumetric displacement is proposed in this work, which is relatively easy and based upon two physical concepts. The first one is energy conservation between hydraulic input energy of the motor and mechanical output energy. The second concept is torque equilibrium with respect to inner and outer rotors. The proposed formula about the volumetric displacement is verified by comparing an analytical displacement and a numerical displacement for an example specification of the motor. The numerical displacement is calculated through a kind of CAD technology. The analytical formula can be utilized in analysis and design of hydraulic gerotor motors.

  • PDF

Modeling and Path-Tracking of Wheeled-Mobile Robots having the Limited Drive-Torques (구동토크의 제약을 갖는 구륜이동로봇의 모델링과 경로추적)

  • 김종수;문종우
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.8
    • /
    • pp.482-491
    • /
    • 2003
  • In this paper are presented kinematic and dynamic modeling and path-tracking of four-wheeled mobile robots with 2 d.o.f haying the limited drive-torques. Controllability of wheeled-mobile robots is revealed by the kinematic model. Instantaneously coincident coordinate system, force/torque propagation and Newton's equilibrium law are used to drive the dynamic model. When drive-torques generated by inverse dynamics exceed the limitation, we make wheeled-mobile robots follow the reference path by modifying the planned reference trajectory with time-scaling. The controller is introduced to compensate for error owing to modeling uncertainty and measurement noise. And simulation results prove that method proposed by this paper is efficient.

A Digitized Decoupled Dual-axis Micro Dynamically Tuned Gyroscope with Three Equilibrium Rings

  • Xia, Dunzhu;Ni, Peizhen;Kong, Lun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.385-395
    • /
    • 2017
  • A new digitized decoupled dual-axis micro dynamically tuned gyroscope with three equilibrium rings (TMDTG) is proposed which can eliminate the constant torque disturbance (CTD) caused by the double rotation frequency of a driving shaft with a micro dynamically tuned gyroscope with one equilibrium ring (MDTG). A mechanical and kinematic model of the TMDTG is theoretically analyzed and the structure parameters are optimized in ANSYS to demonstrate reliability. By adjusting the thickness of each equilibrium ring, the CTD can be eliminated. The digitized model of the TMDTG system is then simulated and examined using MATLAB. Finally, a digitized prototype based on FPGA is created. The gyroscope can be dynamically tuned by adjusting feedback voltage. Experimental results show the TMDTG has good performance with a scale factor of $283LSB/^{\circ}/s$ in X-axis and $220LSB/^{\circ}/s$ in Y-axis, respectively. The scale factor non-linearity is 0.09% in X-axis and 0.13% in Y-axis. Results from analytical models, simulations, and experiments demonstrate the feasibility of the proposed TMDTG.

A Study for the Prediction of a Tire Cornering Characteristics using a Finite Element Method (유한요소법을 이용한 타이어 코너링특성 예측에 관한 연구)

  • 김항우;조규종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.151-162
    • /
    • 1998
  • During a straight driving and cornering maneuver by a vehicle various forces and moments are exerted on the tire's footprint. A cornering properties, handling and stability performances of vehicle can be predicted by these forces and moments values. Therefore, on this study, a lateral force and a aligning torque are predicted by these forces and moments values. Therefore, on this study, a lateral force and a aligning torque are predicted using a finite element method. Contact area of the tire between bead and wheel are fixed to simplify of a finite element model. Lateral force is exerted on the rigid surface as a real load with Coulum friction after inflate and load vertically. Then, rotate the tire's axle to simulate a free rolling untill taken the equilibrium of a aligning torque. Also, experimental observations are made to test a reliability of a FE analysis conducted in this study. The finite element analysis said that good agreement was obtained with experimental results of these cornering properties, giving confidence within about one percent. So it os recommended that a finite element analysis can be used as a good tool to predicted the tire cornering properties.

  • PDF

Realization of Differential Drive Wheeled Mobile Robot Dynamic Modeling Using Newton's Equilibrium law (뉴튼의 평행법칙을 이용한 차동구동 이동로봇의 동력학 모델링 구현)

  • Chung, Yong-Oug;Chung, Ku-Seob
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.349-358
    • /
    • 2010
  • We presents a dynamic modeling of 4-wheel 2-DOF. WMR. The classic dynamic model utilizes a greatly simplified wheel motion representation and using of a simplified dynamic model confronts with a problem for accurate position control of wheeled mobile robot. In this paper, we treats the dynamic model for describes relationship between the wheel actuator force/torque and WMR motion through the use of Newton's equilibrium laws. To calculate the WMR position in real time, we introduced the Dead-Reckoning algorithms and the simulation result show that the proposed dynamic model is useful. We can be easily extend the proposed WMR model to mobile robot of similar type and this type of methodology is useful to analyze, design and control any kinds of rolling robots.

Performance Analysis of Mechanical Face Seal Used for Primary Heat Transport Pump in Heavy Water Reactor (중수로 냉각재 펌프용 미케니컬 페이스 실의 성능 해석)

  • Kim, Jeong-Hun;Kim, Dong-Wook;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.27 no.5
    • /
    • pp.240-248
    • /
    • 2011
  • Mechanical face seal installed in primary heat transport pump used for heavy water reactor prevents leakage of working fluid using thin working fluid film between primary seal ring and mating ring. If the leakage of working fluid exceeds the allowable volume, serious accident can be happened by the trouble of primary heat transport pump. The thinner fluid film exists between primary seal ring and mating ring, the less working fluid leaks out. On the other hand, if the thickness of fluid film is not enough, the life of mechanical face seal will be reduced by friction and wear. Therefore appropriate design is necessary to maximize the performance and life of mechanical face seal. In this study, numerical analysis using finite volume method was conducted to investigate the performance of mechanical face seals which have same deep straight groove and 11 different net coning values. As results, equilibrium clearance between primary seal ring and mating ring, leakage volume of working fluid, friction torque on sealing surface and stiffness of working fluid film were obtained. With increasing net coning value, equilibrium clearance and leakage volume increase, and friction torque and stiffness of fluid film decrease.

Characteristic Analysis of Rotor System due to the Positioning Angles of HDD Supported by Fluid Dynamic Bearings (유체동압베어링으로 지지되는 HDD 의 장착각도에 따른 회전부의 특성해석)

  • Hwang, Choongman;Jang, Gunhee;Lee, Jihoon;Lee, Minho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.986-992
    • /
    • 2014
  • This research investigates experimentally and numerically the tilting angle, eccentricity ratio, flying height of axial direction, friction torque, and critical mass of the HDD disk-spindle system due to HDD positioning angle. The tilting angle and the eccentricity ratio are the maximum when the HDD positioning angle is $90^{\circ}$ respect to horizontal position because the external force in radial direction and the torque applied to the rotating part are the maximum when the HDD positioning angle is $90^{\circ}$. The flying height increases with the increase of the HDD positioning angle because the direction of gravity applied to the rotating part changes. The friction torque increases with the increase of the HDD positioning angle until it becomes $60^{\circ}$, and decreases with the increase of the HDD positioning angle after it becomes $60^{\circ}$. The stability is the maximum when the HDD positioning angle is $90^{\circ}$.

  • PDF

Development of a Procedure to Calculate Principal Internal Forces for the Strength Design of a Forklift Truck Brake System (지게차량 제동장치 시스템 강도설계를 위한 주요 내력 계산 프로시져 개발)

  • 유홍희;박근배
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.27-36
    • /
    • 1997
  • For the strength design of the brake system of a forklift truck, a procedure to calculate the internal forces acting on the system is presented in this paper. Vehicle dynamics, brake system kinematics, and internal force equilibrium analysis are integrated into the procedure. Design parameters such as stopping distance, maximum decceleration, and maximum torque generated by pedal force are considered in the vehicle dynamics, and geometric parameters of the brake system are considered in the brake system kinematics. With the two analysis results obtained, the internal forces acting in the brake system are finally calculated in the procedure.

  • PDF

Stability Analysis of Turbocharger Rotor-Bearing System (과급기 축계의 안정성 해석)

  • Suk, Ho-Il;Song, Jin-Dea;Kim, Yong-Han;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1038-1043
    • /
    • 2002
  • The floating ring journal bearing is attraction for high-speed turbo machinery applications, including turbochargers and aircraft accessory equipment, because it is not only simple and easy to make and to replace in the field but also it seems to have adequate high speed stability characteristics. Therefore, an analysis method of dynamic properties of floating ring journal bearing is presented. The static equilibrium locus of inner film and outer film are calculated by using the impedance description. The equivalent stiffness and damping coefficients of floating ring journal bearing are composed by using the equilibrium of torque between inner film and outer film. Then, a stability analysis of turbocharger shaft system supported with floating ring journal bearing has been performed.

  • PDF

Design of the Air Pressure Pick-up Head for Non-Contact Wafer Gripper (비접촉식 웨이퍼 그리퍼용 공압 파지식 헤드 설계)

  • Kim, Joon-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.401-407
    • /
    • 2012
  • The recent manufacturing process in the thin wafers and flat panel necessitate new approaches to reduce handling fragile and surface-sensitive damage of components. This paper presents a new pneumatic levitation for non-contact handling of parts and substrates. This levitation can achieve non-contact handling by blowing air into an air pressure pick-up head with radial passages to generate a negative pressure region. Negative pressure is caused by the radial air flow by nozzle throat and through holes connecting to the bottom region. The numerical analysis deals with the levitational motion with different design factors. The dynamic motion is examined in terms of force balance(dynamic equilibrium) occurring to the flow field between two objects. The stable equilibrium position and the safe separation distance are determined by analyzing the local pressure distribution in the fluid motion. They make considerable design factors consisting the air pressure pick-up head. As a result, in case that the safe separation distance is beyond 0.7mm, the proposed pick-up head can levitate stably at the equilibrium position. Furthermore, it can provide little effect of torque, and obtain more wide picking region according to the head size.