• Title/Summary/Keyword: Torque Constraints

Search Result 76, Processing Time 0.024 seconds

Manipulator Path Design to Reduce the Endpoint Residual Vibration under Torque Constraints (토크 제한하에서의 첨단부 잔류진동 감소를 위한 매니퓰레이터 경로설계)

  • 박경조;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2437-2445
    • /
    • 1993
  • In this work, a new method is presented for generating the manipulator path which significantly reduces residual vibration under the torque constraints. The desired path is optimally designed so that the required movement can be achieved with minimum residual vibration. From the previous research works, the dynamic model had been established including both the link and the joint flexibilities. The performance index is selected to minimize the maximum amplitude of residual vibration. The path to be designed is developed by a combined Fourier series and polynomial function to satisfy both the convergence and boundary condition matching problems. The concept of correlation coefficients is used to select the minimum number of design variables, i.e. Fourier coefficients, the only ones which have a considerable effect on the reduction of residual vibration. A two-link Manipulator is used to evaluate this method. Results show that residual vibration can be drastically reduced by selecting an appropriate manipulator path to both of unlimited and torque-limited cases.

Trajectory generation for contour control of mechatronics servo systems subjected to torque constraints

  • Goto, Satoru;Nakamura, Masatoshi;Kyura, Nobuhiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.66-70
    • /
    • 1994
  • The actuator saturation defects the countour control performance of mechatronics servo systems. In this paper, trajectory generation of contour control of the mechatronics servo system is developed taking into account of the constraints of the torque in the system. By using the generated trajectory, the torque constraint and assigned working accuracy are satisfied and the accurate contour control performance is achieved.

  • PDF

Modeling dynamic interactions between the support foot and the ground in bipedal walking

  • Jung, Moon-Ryul
    • Journal of the Korea Computer Graphics Society
    • /
    • v.1 no.2
    • /
    • pp.201-212
    • /
    • 1995
  • This paper presents a new method of dynamics-based synthesis of bipedal, especially human, walking. The motion of the body at a time point is determined by ground reaction force and torque under the support foot and joint torques of the body at that time point. Motion synthesis involves specifying conditions that constrain ground reaction force and torque, and joint torques so that a given desired motion may be achieved. There are conditions on a desired motion which end-users can think of easily, e.g. the goal position and orientation of the swing foot for a single step and the time period of a single step. In this paper, we specify constraints on the motion of the support foot, which end-users would find difficult to specify. They are constraints which enforce non-sliding, non-falling, and non-spinning the support foot. They are specified in terms of joint torques and ground reaction force and torque. To satisfy them, both joint torques and ground reaction force and torque should be determined appropriately. The constraints on the support foot themselves do not give any good clues as to how to determine ground reaction force and torque. For that purpose, we specify desired trajectories of the application point of vertical ground reaction force (ground pressure) and the application point of horizontal ground reaction (friction) force. The application points of vertical pressure and friction force are good control variables, because they are indicators to kinds of walking motions to synthesize. The synthesis of a bipedal walking motion, then, consists of finding a trajectory of joint torques to achieve a given desired motion, so that the constraints are satisfied under the condition of the prescribed center of pressure and center of friction. Our approach is distinguished from many other approaches, e.g. the inverted-pendulum approach, in that it captures and formulates dynamics of the support foot and reasonable constraints on it.

  • PDF

A Comparative Study of Operating Angle Optimization of Switched Reluctance Motor with Robust Speed Controller using PSO and GA

  • Prabhu, V. Vasan;Rajini, V.;Balaji, M.;Prabhu, V.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.551-559
    • /
    • 2015
  • This paper's focus is in reducing the torque ripple and increasing the average torque by optimizing switching angles of 8/6 switched reluctance motor while implementing a robust speed controller in the outer loop. The mathematical model of the machine is developed and it is simulated using MATLAB/Simulink. An objective function and constraints are formulated and Optimum turn-on and turn-off angles are determined using Particle swarm optimization and Genetic Algorithm techniques. The novelty of this paper lies in implementing sliding mode speed controller with optimized angles. The results from both the optimization techniques are then compared with initial angles with one of them clearly being the better option. Speed response is compared with PID controller.

An efficient solution algorithm of the optimal load distribution for multiple cooperating robots

  • Choi, Myoung-Hwan;Lee, Hum-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.501-506
    • /
    • 1993
  • An efficient solution algorithm of the optimal load distribution problem with joint torque constraints is presented. Multiple robot system where each robot is rigidly grasping a common object is considered. The optimality criteria used is the sum of weighted norm of the joint torque vectors. The maximum and minimum bounds of each joint torque in arbitrary form are considered as constraints, and the solution that reduces the internal force to zero is obtained. The optimal load distribution problem is formulated as a quadratic optimization problem in R, where I is the number of robots. The general solution can be obtained using any efficient numerial method for quadratic programming, and for dual robot case, the optimal solution is given in a simple analytical form.

  • PDF

Global torque optimization of redundant manipulator using dynamic programming

  • Shim, Ick-Chan;Yoon, Yong-San
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.811-814
    • /
    • 1997
  • In this paper, the torque optimization of a kinematically redundant manipulator for minimizing the torque demands is discussed. The minimum torque solution based on a local optimization has been known to encounter the instability problem and then the global torque optimization was suggested as one of the alternatives. Herein, by adopting the infinity-norm rather than the 2-norm for the magnitude of torques, we are to propose a new cost function more advantageous to the avoidance of torque limits. By the way, a solution to the global torque optimization formulated with the new cost function can not be obtained by the previous methods due to their difficulties such as inability to treat discontinuous cost functions and various constraints on the joint variables. Thus, to overcome those deficiencies, we are developing a new approach using the dynamic programming. The effectiveness of the proposed method is shown through simulation examples for a 3-link planar redundant manipulator.

  • PDF

Maximum Torque Operating Strategy based on Stator Flux Analysis for Direct Torque and Flux Control of a SPMSM (고정자 자속의 해석을 통한 직접 토크 제어 SPMSM의 최대 토크 운전)

  • Kim, Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.463-469
    • /
    • 2014
  • This paper proposes a maximum torque operation strategy for the direct torque control of a surface-mounted permanent-magnet synchronous motor (SPMSM). The proposed method analyzes the available operation region of the stator flux of the SPMSM under voltage and current constraints. Based on this analysis, the optimal stator flux trajectory that yields the maximum torque is obtained across the entire operation region, including constant torque and constant power regions. The proposed strategy is also applicable in the flux-weakening region II operation of the SPMSM, which has no speed limit. The validity of the proposed method is verified through experiments conducted on an 800 W SPMSM drive system.

A Study on the Optimization of Drilling Operations(1): Optimization of Machining Variables for Drilling Operations (드릴가공 최적화에 대한 연구(1): 드릴가공시 가공변수의 최적화)

  • Rou, Hoi-Jin
    • IE interfaces
    • /
    • v.12 no.2
    • /
    • pp.337-345
    • /
    • 1999
  • This paper presents the optimization of a drilling operation subject to machining constraints such as power, torque, thrust, speed and feed rate. The optimization is meant to minimize the machining time required to produce a hole. For the first time, the effects of a pilot hole are included in the formulation of the machining constraints. The optimization problem is solved by using the geometric programming technique. The dual problem is simplified based on the characteristics of the problem, and the effects of machining constraints on the machining variables are identified.

  • PDF

Smooth Torque Speed Characteristic of Switched Reluctance Motors

  • Zeng, Hui;Chen, Zhe;Chen, Hao
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.341-350
    • /
    • 2014
  • The torque ripple of switched reluctance motors (SRMs) is the main disadvantage that limits the industrial application of these motors. Although several methods for smooth-toque operation (STO) have been proposed, STO works well only within a certain torque and speed range because of the constraints of the supply voltage and peak current. Based on previous work that sought to expand the STO range, a scheme is developed in this study to determine the maximum smooth torque range at each speed. The relationship between the maximum smooth torque and speed is defined as the smooth torque speed characteristics (STSC), a concept similar to torque speed characteristics (TSC). STSC can be utilized to evaluate torque utilization by comparing it with TSC. Thus, the concept benefits the special design of SRMs, especially for the generation of smooth torque. Furthermore, the torque sharing function (TSF) derived from the proposed method can be applied to STO, which produces a higher smooth torque over a wider speed range in contrast to four typical TSFs. TSimulation and experimental results verify the proposed method.

An Enhanced Finite-Settling-Step Direct Torque and Flux Control (FSS-DTFC) for IPMSM Drives

  • Kim, Sehwan;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1367-1374
    • /
    • 2016
  • This paper presents a discrete-time version of voltage and current limited operation using an enhanced direct torque and flux control method for interior permanent magnet synchronous motor (IPMSM) drives. A command voltage vector for airgap torque and stator flux regulation can be uniquely determined by the finite-settling-step direct torque and flux control (FSS-DTFC) algorithm under physical constraints. The proposed command voltage vector trajectories can be developed to achieve the maximum inverter voltage utilization for the discrete-time current limit (DTCL)-based FSS-DTFC. The algorithm can produce adequate results over a number of the potential secondary upsets found in the steady-state current limit (SSCL)-based DTFC. The fast changes in the torque and stator flux linkage improve the dynamic responses significantly over a wide constant-power operating region. The control strategy was evaluated on a 900W IPMSM in both simulations and experiments.