'93 KACC (1993.10.20~22)

An Efficient Solution Algorithm of the Optimal Load

Distribution for Multiple Cooperating Robots

Myoung Hwan Choi* and Bum Hee Lee

x*x

*Dept. of Control and Instrumentation Eng.. Kangwon Nationa! Univ.
** Dept. of Control and Instrumentation Eng., Seoul National Univ.

Abstract

An efficient solution algorithm of the optimal load
distribution  problem with joint torque constraints is
presented. Multiple robot system where each robot is rigidly
grasping a common object is considered. The optimalily
criteria used is the sum of weighted norm of the joint forque
vectors. The maximum and minimum bounds of each joint
forque in arbitrary form are considered as constraints, and
the solution that reduces the internal force fo zero is
obtained. The optimal " load distribution problem is
formulated as a quadratic optimization problem in R, where |
is the number of robots. The general solution can be
obtained using any efficient numerical method for quadratic
programming, and for dual robot case, the optimal solution
is given in a simple analytical form.

1. Introduction

In recent years, growing research efforts have been focused
on the subject of cooperative multiple robot systems. Multiple
robot arms in cooperation can perform many tasks that would
be impossible to perform for a single robot arm. Examples of
these tasks are manipulation of objects without auxiliary
equipments such as jigs or fixtures, and handling of heavy or
large objects which can not be handled by a single robot arm.

When multiple robots work in cooperation to move an
object along a given trajectory, joint torques of the robots
that will produce the required motion have to be determined.
This problem is referred to as a load distribution problem.
When multiple robot arms grasp a common object, they form
a closed kinematic chain, and as a result, the number of
degrees of freedom of the multi-robot system becomes less
than the total number of robot joints. The linear mapping
from joint torque vector space to the space of resultant
force/torque vector on the object has a null space. As a
consequence, infinite number of joint torque solutions exist
that can be applied to produce the given motion of the object.
In order to obtain the optimal joint torque solution, a suitable
objective function need to be introduced.

Optimization algorithms for solving the load distribution
problem have been developed in many literatures. The

structure of the solution algorithms are closely related to the
order of the objective function. When the objective function is
linear, the solution is commonly obtained by using linear
programming method. Orin and Oh [1] have defined a linear
combination of energy and load balancing as the objective
function, and used LP method to calculate the joint torques
for the OSU hexapod vehicle. Cheng and Orin [2] developed
the Compact-Dual LP method that gives an efficient solution
for general linear optimization problem with equality and
inequality constraints, by eliminating the equality constraints
and utilizing the duality theory. When the objective function is
quadratic, the solution is commonly obtained by nonlinear
programming (NLP) method. Nakamura es al. {3] have
defined minimum norm forces as the objective function and
applied a NLP method based on Lagrange multiplier. Klein
and Kittivatcharapong [4] have devised the so-called exterior
method, using Rosen's gradient projection algorithm {5].
Zheng and Luh [6] proposed a solution in analytic form for
two cooperating robots, and Zheng and Luh [7] presented a
numerical method based on direct approximate programming.
Choi e al. [8] developed a solution method utilizing force
ellipsoid that can be used when the norm of joint torque
vector is bounded. Lu and Meng [9] have proposed a two
loop procedure aigorithm which can be applied to general
quadratic optimization problem with constant torque bounds.
In this method, the constrained optimization problem is
transformed into an unconstrained optimization problem by
forming a new objective function which linearly combines the
quadratic objective function with the maximum normalized
torque by an adaptive weighting factor. The solution is then
obtained by an iterative procedure using any popular
unconstrained optimization techinque.

If the solution of the optimal load distribution is to have
practical significance in the control of the multi-robot system,
the joint torque bounds must be taken into the problem
formulation.  The joint torque solution exceeding the
maximum torque bound would be meaningless. When the
objective function is linear, the joint torque bounds can be
included in the formulation without a major increase in
computation. For example, the efficient algorithm in Cheng
and Orin [2] deals with a general linear programming problem
with inequality as well equality constraints. However, when
the objective function is quadratic, an addition of inequality
constraints can result in a substantial increase in the
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computational burden. For this reason, an efficient solution
algorithm is scarce that can be applied to solve the optimal
load distribution problem where the objective function is
quadratic and joint torque bounds are included as inequality

constraints. Solution procedures in Nakamura ef al. [3], Klein
and Kittivatcharapong [4), and Zheng and Luh [6] ignore the
torque bounds  Although Zheng and Luh [7] presented a
nonlinear programming method that considers the joint torque
bounds, no remark was given on the computational efficiency
of the algorithm, and as the authors commented, the
convergence of the algorithm is not quaranteed. The solution
procedure in Choi ef al. [8] is efficient, but the joint torque
constraint is in the form of the bound on the norm of joint
torque vector. The algorithm proposed by Lu and Meng [9]
can utilize any efficient unconstrained optimization technique,
although the procedure is iterative by its nature.

The objective of this paper is to propose an algorithm that
gives an efficient solution of the optimal load distribution
problem. Multiple robot arms rigidly grasping a common
object is considered. The objective function is the weighted
norm of joint torque vectors, and the torque bounds of joint
actuators are included jn the problem formulation. An
additional constraint is imposed so that the internal force in
the object is zero. The solution procedure proposed in this
paper differs from other algorithms in that the dimension of
the feasible solution space is considerably reduced, and the
optimal solution is obtained by solving a ‘quadratic
optimization problem in &', where / is the number of robots.
in particular, for dual robot case, the optimal solution is given
in a simple analytical form.

This paper is organized as foilows. In section 2, the general
formulation of the optimal load distribution problem is
presented. In section 3, an alternative formulation is derived
using the additional constraint of zero internal force, and in
section 4, the two robot arm example is studied and the
optimal solution is derived in an analytical form.

2. General Problem Formuiation for the Optimal Load
-Distribution

Nomenclatures

number of robots

dimension of robots' operational space
degree of freedom of each robot

m x n manipulator Jacobian matrix of robot i
m x | force/torque applied by robot i at the
gripping position

m x 1 resultant force/torque applied at object
reference point

m x 1 force/torque applied by robot i at object
reference point

= 1 x 1 joint torque/force of robot i

3 x 3 mass matrix of object

3 x 3 inertia matrix

3 x | position vector of object

= 3 x 1 angular velocity of the object

= 3 x | gravitational acceleration vector

= 3 x 1 position vector of the contact point of
robot 7 from the object reference point

P o, o, ‘9,4, 4 are
‘DUq)'g + 'H('q,'q) + 'G . Then, (1) can be written as
below

In a multiple robot cooperation, robots can either grasp the
“object rigidly or hold the object between the robot fingers by
frictional forces. In this paper, the former case is considered
which is suitable for a large number of industrial robot
application. A model of multiple robot arms grasping an rigid
body object is shown in Fig. 1. The object is held rigidly so
that no relative motion is possible between the object and the
robot grippers. 1t is assumed, for the purpose of convenience,
that the robots have the same number of degrees of freedom,
and do not pass through singular positions so that the
manipulator Jacobians always have full ranks.

The dynamic equation of motion of each robot is given by
the following equation.

iDiig)ig + 'H(q,’q) + ‘G + JT'F = i )

In general, the motion of a rigid body object is completely
described by the three dimensional position and orientation
vectors, and the maximum value of the dimension of its
operational space is six. In some cases, the robots operate in
a reduced operational space, for example, in two dimensional
space. In this paper, n is assumed to be six, unless specified
otherwise. The dynamic equation of motion of the object is
described as below.

M0 p 0 Mg
+ + =
o la ] e ][]
where M is a 3 x 3 diagonal matrix whose diagonal elements

are equal to the mass of the object, - /“is a 3 x 3 inertia matrix
of the object. :

Let the force and torque components of '/~ be denoted by
¥ and 'm respectively. Then, the force/torque applied at the
object reference point by robot i is given as below.

S IR [ P
m+'rx'f S I m

iy = "'_!' R iR = {] 0
i S I3
¥,
Then,
o= RV 4

Given the trajectory of the robots and the object,
known. Let ‘y denote
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robot 1

robot 2

world

Fig.t Coordination of multiple robots

iJTIR~l ih + iu

i
{

WV ih + 'u, where 'V = JUR &)

The resultant force/torque I is the sum of the force/torques
applied by the robots. Therefore, the force balance equation

is
F = I 'k (6)

where Fis given by (2). The force/torques applied by joint
torques of the robots must satisfy the constraint (6). The joint
torque constraints are expressed by the maximum and
minimum bounds of the joint actuator torques.

Toin € T € T » i = 1,2, N

The general quadratic objective function that minimizes the
-sum of weighted norms of joint torques can be expressed as

® = I, 10 it (8)
where
‘0 = diaglwi, .., wi) , wye R!

The element w, represents the weighting factor for j-th
component of the torque vector of robot i. The objective
function in (8) has frequently been used when the minimum
energy criteria was employed [6-9]. Combining (6)-(8), the
load distribution problem can be formulated as a quadratic
optimization problem as below

Minimize & = ., “1"iQ 1
subject to ZI;:l ‘h = F
T S "o
~T € S, i= 12,0 (9)

The force/torque term i is related to the joint torques by
(5).  The formulation in (9) is a nonlinear optimization
problem with quadratic objective function, and equality as

well as inequality constraints. The optimal solution, if it exists,
belongs to a n/f - dimensional space.

3. Alternative Formulation of the Optimal Load

Distribution

When the contact between the object and robot fingers is a
frictional contact, each robot must maintain a suitable normal
contact force at the contact point so that the contact between
the object and the finger is not lost. However, when multipie
robots rigidly grasp a common rigid body object, as the case
is in this paper, the normal contact force need not be applied.
Moreover, in order to prevent the damage to the object, it is
generally desirable to keep the internal force to the minimum,
Internal force is defined [10] as the component of the force
applied by the robots on the object that are cancelled by each
other, producing no motion of the object, but resulting in the
stress in the object. From the above discussions, a reasonable
control strategy in multiple robot coordination which can be
employed in the industrial applications, is to maintain the
internal force in the object to zero. This strategy ‘has been
used without considering the joint torque constraints in [6]. If
the zero internal force strategy is adopted, then, the
force/torque applied by the robot i , ', at the object reference
point must be parallel to the resultant force . Hence, '/ can
be expressed as

ih = o, F
!

Zoy ;=1 and0 € ; €1, i=1

(10)

ool (1

The itnequality constraint (11) on the range of «; is needed to
comply with the control strategy that the internal force be
zero. The objective function @ can be expressed as a
function of o, using (5) and (10)

P = Z’,:‘ rtl':Q it
Tl VF +u |TQ Lo, VF + ]
X};:l (F‘ iyt inV F)(X,?

+ 2( i“l ’Q'VF)Q,‘ + i“T YQVN

il
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/
= X, a af+b,-0t, + ¢

= oA + Ba + C (12)
where

ai = FTWUVQWFE, b =2(T'QVF),

¢, = uliQiu

o = (o, ....,oq01", A = diag{ay,...,a}

B =1|by,.....,0], C = ci+c+....%¢;

Since ‘Q is positive definite, . a, is strictly positive , and it
follows that A is also positive definite. The joint torque
constraint (7) can be rewritten using (5) and (10).

Tin — 4 < o, VF € o — ' (13)

The expression in (i3) represents »n inequality constraints
for the range of the scalar variable o; , and thus, its feasible
region can be obtained by the intersection of n constraints in
(13). Let (-)J denote the j-th element of e vector. Then,
assuming (}7) # 0 for all j , the constraints on o is
obtained from (13) as below.

LB, £ o; < 'UB; ,j= 1,2,...n

tmax); {CVEY; > 01+ (T, [CVF); < 01~ ('u);

iR, =
where  'UB; wrm,
LB, = (’rm),l('VF),>01+('r.i.x),l('l’ﬂ,<01—<'u), (14)
vy
Taking the intersection of » constraints,
‘LB < a; < 'UB,
LB = max, 'LB;, 'UB = min; 'UB, (15)

where [(VF) > 0 ] evaluates to 1 if (¥F) >0, and zero
otherwise. Similarly, [(VF), < 0] evaluates to 1 if (VF), <0,
and zero otherwise.

Note that it has not been assumed that the joint torque
bounds , (“Tmax); and (“Ty); are constants. They may be
indeed arbitrary functions as long as their values are known
before the calculation of (14). If (FF), = 0 for some j, then
(13) reduces to

(itmin)j < (‘")j <

(irmax)j, j"" 1,...n (]6)

In this case, there is no extra load for the j-th actuator of
robot i to move the object, apart from that to move its own
link. If (), does not satisfy the constraint (16) , then it

implies that the joint torque required to move the links of the
robot i exceeds the torque bound of j-th actuator.
Consequently, the given trajectory of the robots and the
object can not be generated and the trajectory of the robots
and the object must be replanned. Hence the assumption that
(VF),# 0 can be used without loss of generality.

By definition, o; must also satisfy (11). Combining (11) and
(15), the feasible region of «; is given by

i=1,....4

Aimin = max{ 0, ‘LB } ,

Oli.min < o = Oimax » (]7)

where

Cimax = min{ 1, ‘UR}

It is noted that if O;mim = Olimax, then no feasible o; exists

and the load distribution problem has no solution. In this
case, the trajectory of the object has to be replanned.
Summarizing the above results, the optimal load

distribution problem can be formulated as a quadratic
optimization problem using the vector variable o

Minimize ® = o'4oa + Bo + C
subject to n"a =1
Omin € O £ Olmax (18)
where N={111... 11", Omin = [ %imins -+ s Oltemin J7

Omax = | Cimaxs - - -y Ohmax IT

The optimization problem in (18) searches for an optimal
solution in a / - dimensional space. Note that compared to
the formulation in (9), the search space was reduced from »/
-dimensional space to / - dimensional space.

5. Two robot example

When two robots rigidly grasp a common object, the
optimal load distribution solution can be obtained in a simple
analytical form. For two robot case, the optimization problem
in (18) can be written as
o400 + Bo + C

Minimize ¢ =

= alaf+a2a§+b1al+bzaz+c. + C2

subject to
oy + oy = |
Oimin S 0 £ Oy max
Oymin S 02 £ O mmx (19)

Usinga; = 1 — ) , the objective function is reformed as

@ = (ai+a)ol + (b =2a1-h) oy
+(az+hz+C|+Cz) (20)
. and the constraints can be written as
Ot min < oy < Oy, max
and l"aZ,max S TS ]—az.min (21)
Then, the range of «, is finally formed as
&l.mm < o < &Lmax i
where &I.min = max(al‘mim 1 "al,max}
&I.max = min{al,m:\x» 1 —al.min} (22)

Summarizing the above results, the optimization problem is
simplified to
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0N

a
— a,
A
é1,m|n a1 max
(a)
QA
a
a1
A A
a1 min d1,max
(b)
Minimize ‘
D = (a, +Gz)af+(b1 —2a; - by, +(a, +bh; +ci1+¢3)
subject to dl.min < Oy < é-I.ﬂ'm)( (23)

The solution of the above problem is now given below.
-The objective function @ has a unique global optimal , and
the solution is divided into three cases depending on the
position of this global optimal point. Three cases are
illustrated in Fig. 2.

Let o} denote the optimal solution , and

— - (by=2ay-b;) .
= —1 22 of @ .
a Terren) denote the global optimal

A —

) If Gimio S & S Qyma, then, o] = &
iy If

W) If

then, a} = &I,max

~
Oy max »

f=3}
\%

O imin s then, 6] = G} min

Qi
IA

Once o] and of = 1-a] is found, the joint torques

can be obtained using (5) and (10).

6. Conclusions

The optimal load distribution with joint torque constraints is
studied and an efficient algorithm is presented. Objective
function to be minimized is the sum of weighted norm of joint
torque vectors, and joint torque bounds in arbitrary form is
considered. By employing an additional constraint of zero

o
a
a1
A A
a1 min A1, max
()
Fig2  Solution for two robot example.
@) Oimin € & € Qypy and @) = &

(b) & 2 &yma . and !1; = &I.mu
(€ &S Gypin, and 0 = Gy min

internal force in the object, the dimension of the feasible
solution space is reduced from n/ to / | resulting in a major
reduction in computation. The problem is in the form of
quadratic optimization problem and any popular optimization
technique can be used 1o obtain the solution. For two robot
example, the solution is given in a simple analytical form.
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