• Title/Summary/Keyword: Topological Model

Search Result 245, Processing Time 0.025 seconds

UNIQUENESS OF TOPOLOGICAL SOLUTIONS FOR THE GUDNASON MODEL

  • Kim, Soojung;Lee, Youngae
    • 대한수학회지
    • /
    • 제58권4호
    • /
    • pp.873-894
    • /
    • 2021
  • In this paper, we consider the Gudnason model of 𝒩 = 2 supersymmetric field theory, where the gauge field dynamics is governed by two Chern-Simons terms. Recently, it was shown by Han et al. that for a prescribed configuration of vortex points, there exist at least two distinct solutions for the Gudnason model in a flat two-torus, where a sufficient condition was obtained for the existence. Furthermore, one of these solutions has the asymptotic behavior of topological type. In this paper, we prove that such doubly periodic topological solutions are uniquely determined by the location of their vortex points in a weak-coupling regime.

복합곡면의 다면체 곡면 근사 (Approximation of a compound surface to polyhedral model)

  • 김영일;전차수;조규갑
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1996년도 춘계공동학술대회논문집; 공군사관학교, 청주; 26-27 Apr. 1996
    • /
    • pp.100-103
    • /
    • 1996
  • Presented in this study is an algorithmic procedure to obtain polyhedral model from a compound surface. The compound surface in this study denotes a collection of trimmed surfaces without topological relations. The procedure consists of two main modules: CAD data interface, and surface conversion to polyhedral model. The interface module gets geometric information from CAD databases, and makes topological information by scanning the geometric information. We are investigating CATIA system as a data source system. In the surface conversion module, a shell(compound surface with topological information) is approximated to a triangular-faceted polyhedral surface model through node sampling and triangulation steps. The obtained polyhedral model should obey the vertex-to-vertex rule and meet tolerance requirements. Since the polyhedral model has a simple data structure and geometry processing for it is very efficient and robust, the polyhedral model can be used in various applications, such as surface rendering in computer graphics, FEM model for engineering analysis, CAPP for surface machining, data generation for SLA, and NC tool path generation.

  • PDF

Jellyfish: A Conceptual Model for the AS Internet Topology

  • Siganos Georgos;Tauro Sudhir Leslie;Faloutsos Michalis
    • Journal of Communications and Networks
    • /
    • 제8권3호
    • /
    • pp.339-350
    • /
    • 2006
  • Several novel concepts and tools have revolutionized our understanding of the Internet topology. Most of the existing efforts attempt to develop accurate analytical models. In this paper, our goal is to develop an effective conceptual model: A model that can be easily drawn by hand, while at the same time, it captures significant macroscopic properties. We build the foundation for our model with two thrusts: a) We identify new topological properties and b) we provide metrics to quantify the topological importance of a node. We propose the jellyfish as a model for the inter-domain Internet topology. We show that our model captures and represents the most significant topological properties. Furthermore, we observe that the jellyfish has lasting value: It describes the topology for more than six years.

비다양체 모델간의 기하학적 접합 연산에 관한 연구 (A Study on Geometrical Glue Operation between Non-manifold Models)

  • 박상호
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제4권1호
    • /
    • pp.11-19
    • /
    • 1998
  • 오일러 연산과 집합 연산과 같은 비다양체 위상 연산은 모델링의 다양한 환경을 제공한다. 이들 연산들은 주어진 모델의 위상 정보를 적합하게 유지하도록 하기 위하여 기하학적인 문제를 발생시킨다. 꼭지점, 모서리와 면과 같은 요소들이 서로 접촉할 때 이들 연산의 내부에서 수행되는 접합 연산은 비다양체 모델의 위상을 수정하는 기본적인 방법이다. 비다양체 모델을 접합할 때는 위상 관계를 추론하여야 한다. 위상 관계의 추론 방법은 위상학적인 방법과 기하학적인 방법의 2 가지 경우로 분류할 수 있다. 위상학적인 방법은 저장되어 있는 위상 정보만을 이용하여 위상 관계를 추론한다. 반면에, 기하학적인 방법은 접합이 일어나는 부분적인 영역에서 기하학적인 형상을 고려하여 위상의 관계를 찾아내는 방법이다. 본 연구에서는 이들 중에서 기하학적인 방법에 관하여 기술한다.

  • PDF

A Persistent Naming of Shells

  • Marcheix, David
    • International Journal of CAD/CAM
    • /
    • 제6권1호
    • /
    • pp.125-137
    • /
    • 2006
  • Nowadays, many commercial CAD systems support history-based, constraint-based and feature-based modeling. Unfortunately, most systems fail during the re-evaluation phase when various kind of topological changes occur. This issue is known as "persistent naming" which refers to the problem of identifying entities in an initial parametric model and matching them in the re-evaluated model. Most works in this domain focus on the persistent naming of atomic entities such as vertices, edges or faces. But very few of them consider the persistent naming of aggregates like shells (any set of faces). We propose in this paper a complete framework for identifying and matching any kind of entities based on their underlying topology, and particularly shells. The identifying method is based on the invariant structure of each class of form features (a hierarchical structure of shells) and on its topological evolution (an historical structure of faces). The matching method compares the initial and the re-evaluated topological histories, and computes two measures of topological similarity between any couple of entities occurring in both models. The naming and matching method has been implemented and integrated in a prototype of commercial CAD Software (Topsolid).

Retrieval of Non-rigid 3D Models Based on Approximated Topological Structure and Local Volume

  • Hong, Yiyu;Kim, Jongweon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권8호
    • /
    • pp.3950-3964
    • /
    • 2017
  • With the increasing popularity of 3D technology such as 3D printing, 3D modeling, etc., there is a growing need to search for similar models on the internet. Matching non-rigid shapes has become an active research field in computer graphics. In this paper, we present an efficient and effective non-rigid model retrieval method based on topological structure and local volume. The integral geodesic distances are first calculated for each vertex on a mesh to construct the topological structure. Next, each node on the topological structure is assigned a local volume that is calculated using the shape diameter function (SDF). Finally, we utilize the Hungarian algorithm to measure similarity between two non-rigid models. Experimental results on the latest benchmark (SHREC' 15 Non-rigid 3D Shape Retrieval) demonstrate that our method works well compared to the state-of-the-art.

곡선의 위상구조 변경을 이용한 영역 기반 ACM의 성능개선 기법 제안 (Improving Performance of Region-Based ACM with Topological Change of Curves)

  • 한희일
    • 한국멀티미디어학회논문지
    • /
    • 제20권1호
    • /
    • pp.10-16
    • /
    • 2017
  • This paper proposes efficient schemes for image segmentation using the region-based active contour model. The developed methods can approach the boundaries of the desired objects by evolving the curves through minimization of the Mumford-Shah energy functionals, given arbitrary curves as initial conditions. Topological changes such as splitting or merging of curves should be handled for the methods to work properly without prior knowledge of the number of objects to be segmented. This paper introduces how to change topological structure of the curves and shows experimental results by applying the methods to the images.

FlexDesigner:계층적으로 모듈화된 주초의 객체 지향 방식 비다양체 모델링 커널 (FlexDesigner:Object-Oriented Non-manifold Modeling Kernel with Hierarchically Modularized Structure)

  • 이강수;이건우
    • 한국CDE학회논문집
    • /
    • 제2권4호
    • /
    • pp.222-236
    • /
    • 1997
  • Conventional solid or surface modeling systems cannot represent both the complete solid model and the abstract model in a unified framework. Recently, non-manifold modeling systems are proposed to solve this problem. This paper describes FlexDesigner, an open kernel system for modeling non-manifold models. It summarizes the data structure for non-manifold models, system design methodology, system modularization, and the typical characteristics of each module in the system. A data structure based on partial-topological elements is adopted to represent the relationship among topological elements. It is efficient in the usage of memory and has topological completeness compared with other published data structures. It can handle many non-manifold situations such as isolate vertices, dangling edges, dangling faces, a mixed dimensional model, and a cellular model. FlexDesigner is modularized hierarchically and designed by the object-oriented methodology for reusability. FlexDesigner is developed using the C++ and OpenGL on both SGI workstation and IBM PC.

  • PDF

상황인식을 위한 물체간 토폴로지관계의 표현 및 추론 (Representation and inference of topological relations between objects for spatial situation awareness)

  • 미나미 타카시;유재관;정낙영
    • 로봇학회논문지
    • /
    • 제3권1호
    • /
    • pp.42-51
    • /
    • 2008
  • Robots need to understand as much as possible about their environmental situation and react appropriately to any event that provokes changes in their behavior. In this paper, we pay attention to topological relations between spatial objects and propose a model of robotic cognition that represents and infers temporal relations. Specifically, the proposed model extracts specified features of the cooccurrence matrix represents from disparity images of the stereo vision system. More importantly, a habituation model is used to infer intrinsic spatial relations between objects. A preliminary experimental investigation is carried out to verify the validity of the proposed method under real test condition.

  • PDF

CO-CLUSTER HOMOTOPY QUEUING MODEL IN NONLINEAR ALGEBRAIC TOPOLOGICAL STRUCTURE FOR IMPROVING POISON DISTRIBUTION NETWORK COMMUNICATION

  • V. RAJESWARI;T. NITHIYA
    • Journal of applied mathematics & informatics
    • /
    • 제41권4호
    • /
    • pp.861-868
    • /
    • 2023
  • Nonlinear network creates complex homotopy structural communication in wireless network medium because of complex distribution approach. Due to this multicast topological connection structure, the queuing probability was non regular principles to create routing structures. To resolve this problem, we propose a Co-cluster homotopy queuing model (Co-CHQT) for Nonlinear Algebraic Topological Structure (NLTS-) for improving poison distribution network communication. Initially this collects the routing propagation based on Nonlinear Distance Theory (NLDT) to estimate the nearest neighbor network nodes undernon linear at x(a,b)→ax2+bx2 = c. Then Quillen Network Decomposition Theorem (QNDT) was applied to sustain the non-regular routing propagation to create cluster path. Each cluster be form with co variance structure based on Two unicast 2(n+1)-Z2(n+1)-Z network. Based on the poison distribution theory X(a,b) ≠ µ(C), at number of distribution routing strategies weights are estimated based on node response rate. Deriving shorte;'l/st path from behavioral of the node response, Hilbert -Krylov subspace clustering estimates the Cluster Head (CH) to the routing head. This solves the approximation routing strategy from the nonlinear communication depending on Max- equivalence theory (Max-T). This proposed system improves communication to construction topological cluster based on optimized level to produce better performance in distance theory, throughput latency in non-variation delay tolerant.