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Abstract 
 

With the increasing popularity of 3D technology such as 3D printing, 3D modeling, etc., there 

is a growing need to search for similar models on the internet. Matching non-rigid shapes has 

become an active research field in computer graphics. In this paper, we present an efficient and 
effective non-rigid model retrieval method based on topological structure and local volume. 

The integral geodesic distances are first calculated for each vertex on a mesh to construct the 

topological structure. Next, each node on the topological structure is assigned a local volume 
that is calculated using the shape diameter function (SDF). Finally, we utilize the Hungarian 

algorithm to measure similarity between two non-rigid models. Experimental results on the 

latest benchmark (SHREC’ 15 Non-rigid 3D Shape Retrieval) demonstrate that our method 

works well compared to the state-of-the-art. 
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1. Introduction 

The rapid development of 3D technology (3D printing, 3D scanning, 3D modeling, etc.) and 

computer networks have led to 3D models being widely used in many fields. Considering that 

designing and creating a 3D model is not simple, retrieving 3D models accurately and quickly 
from a huge database is becoming more desirable. There are also issues [1-2] concerning 

copyright protection of 3D models. High Accuracy 3D model retrieving technology would 

benefit the interest of copyright holders by intercepting illegally distributed 3D models. 

In the beginning of 3D shape retrieval, most efforts were focused on retrieval methods for 
rigid 3D models. However, recently retrieval methods for non-rigid 3D models that may 
require more shape analysis, have been an active area of computer graphics research. As 

shown in Fig. 1, non-rigid 3D models indicate that, with different poses or articulations, the 

human and hand models in each row are in the same category. 

To appropriately compare two non-rigid models, shape descriptors must be invariant to 
non-rigid bending and articulations. In this paper, we utilize two characteristics of non-rigid 

models to measure dissimilarity between the models. The first characteristic is geodesic 
distance and path that means the shortest distance and path between two vertices on the mesh 

surface. Fig. 2 (a) shows that the distance and path on the mesh between two pose-deformed 

models are nearly unchanged. The second characteristic is local volume on the corresponding 

 
Fig. 1. Non-rigid models 

 

 
Fig. 2. (a) Geodesic path (b) Local volume 
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position between two non-rigid models. In Fig. 2 (b), the color on the models indicates local 

volume calculated by SDF [3]. We can see that the local volume in the corresponding positions 
is almost similar. 

2. Related Work 

During the past few years, several algorithms [4-17, 30, 31] have been proposed for 3D shape 

retrieval. Existing methods can be divided into two main types: retrieval methods for rigid and 

non-rigid 3D models. For rigid model retrieval, there are algorithms based on 2D views [5-6, 
9], spectral transformation [7], topology [4], statistics [8], etc. For more details about these 

algorithms, we refer readers to [22-23]. Retrieval approaches for non-rigid models are 

extensions of algorithms for rigid model retrieval. The extension requires extracted features 

from models to be isometry-invariant. For example, Lian et al. in [9] extended a 2D-view 
based rigid model retrieval method [10] that they had proposed before, to use for non-rigid 

model retrieval by first utilizing multidimensional scaling on the 3D model to obtain its 

bending invariant representation. Readers can refer to [24-26] for a good comparison of 
methods for non-rigid 3D shape retrieval. 

There are several algorithms (ShapeDNA [13], Heat Kernel Signature [14], Wave Kernel 
Signature [15], etc.) based on eigenvalues and associated eigenfunctions of the 

Laplace-Beltrami operator to construct spectral shape descriptors that depend on mesh surface. 

The Laplace-Beltrami operator [13] provides good properties of translation invariance, 
rotation invariance, isometric invariance and optionally scaling invariance. A comparative 

survey of these types of algorithms can be found in [16]. 

One intuitive approach for non-rigid 3D model retrieval is comparison of topological 
structure and the corresponding geometric features between two non-rigid 3D models. Hilaga 

et al. [4] presented multi-resolution reeb graph that is a topology construction method based on 
geodesic distance and reeb graph theory. The topology matching used coarse-to-fine strategy 

to search the node pairs that have maximum similarity. However, these types of topology 

construction and similarity measurement algorithms must satisfy many conditions and 
therefore cannot achieve good performance. Sfikas et al. [11] proposed a conformal factor 

guided topological structure construction algorithm. Conformal factor is primarily based on 

curvature that can easily be affected by geometric noise. 

Gal [17] proposed a 2D histogram based pose-oblivious shape signature that combines two 

scalar functions defined on the surface of a 3D model. The first function is called a 
local-diameter function that can measure local volume of a 3D model. In the following study 

[3], they modified this function and renamed it SDF that is used consistently in mesh 

partitioning and skeletonization. The second function is a centricity function that measures the 
integral geodesic distances for the entire 3D model. 

We propose an efficient and effective approach for non-rigid 3D model retrieval that is 
largely based on two pose invariant features: geodesic distance and local volume. Our 

contributions in this paper can be summarized as follows. 

 Based on integral geodesic, we propose a simple and effective method for constructing 
topological structure of 3D models. 

 The SDF algorithm is modified to works more effectively and efficiently on our 

non-rigid 3D models retrieval method. 

 We modified the penalizing scheme of the 3D model matching algorithm that used in 
[11] to make the matching algorithm more reasonable 
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3. Method description 

3.1 Construction of Topological Structure 

Our algorithm for construction of topological structure requires four steps. First, integral 

geodesic distances are calculated for every vertex on the mesh. Second, we extract vertices 

that reside on tips of protrusions and vertexes on the center of surfaces using integral geodesic 

distances. Third, the protrusion tips and vertex on the surface center are connected by finding 
the shortest geodesic paths. Finally, we sample points on the geodesic paths to extract 

topological nodes. Fig. 3 illustrates the overall topology construction process, and the process 

is discussed in detail below. 

Integral geodesic distances were first proposed by Hilaga et al. [4]. The discrete case can be 
defined as follows: 

               

   

                                                                     

where        denotes the shortest geodesic distance between vertex   and  . Therefore, 

       is the integral of all geodesic distances from   to all vertices   on a surface  . In our 
approach, all geodesic distances and paths are computed by the fast marching method [19-20]. 

Fig. 3 (b) shows color-coding of integral geodesic distances of the model. Generally, the 

vertex that has the minimum integral geodesic distance will reside on the center of a surface, 
and the vertices that are farther from the center of the surface will have a larger scalar value of 

integral geodesic distance. Using this property of integral geodesic distance, we can extract 

vertices on the tips of protrusions by measuring whether the scalar value of integral geodesic 
distance of a vertex is the local maxima within a radius of a geodesic neighborhood [4, 18]. In 

this paper, the radius of a geodesic neighborhood is called    . A smaller    will extract 

tip-vertex on small parts of the 3D model, such as each finger of a human model. A larger    

will more likely extract tip-vertex from a large protrusion of a 3D model, such as an arm or leg 

of a human model that is more robust to geometric noise. In Fig. 3 (c), the blue point and the 

red points represent the surface center and extracted protrusion tips in the case where    is set 

as                 . The term                was introduced in [4] and is used as a 

threshold to divide mesh faces into groups, so we multiply a scalar value to change the scale of 

  . 

 
Fig. 3. Overall topology construction process (a) Original model (b) Color-coding of integral 

geodesic distances of the model (c) Shortest paths from each protrusion tip to surface center (d) 

Topological structure (e) Selected topological nodes.  
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To construct a topological structure simply and effectively, we found that connecting 
protrusion tips and the surface center on the mesh surface can approximate the topology of a 

model without a complex process (Fig. 3 (c)). The connection can be made by finding the 
shortest paths from each protrusion tip to the surface center using the fast marching method. In 

Fig. 3 (c), the black lines represent the shortest paths. For better presentation, we show the 

topological structure alone in Fig. 3 (d). Every path from a protrusion tip to the surface center 

is called a topological path in this paper. 

After constructing the topological structure, we select topological nodes that can represent 
corresponding sub-parts of the 3D model. On every topological path, we choose points from 

the protrusion tip to the surface center using a geodesic distance interval   , and consider them 

as topological nodes. In Fig. 3 (e), the points with the same color represent selected 

topological nodes on the same topological path when                       . We 

define the topological nodes on the same topological path in order from the protrusion tip to 

the surface center as a topological string. 

In Fig. 4, we compare conformal factor [11-12] with our topological structure. The 
conformal factor is produced by the source code [29] on the internet. As in [11], we quantized 
the conformal factor into eight levels. From Fig. 4 (a), we can see that the conformal factor is 

not consistent between the two two-ball models at the distorted location while the integral 

geodesic shows the consistency which leads to stability of our topological structure. In Fig. 

4(b), we cut off an arm of the centaur model; from the picture, we can see that the conformal 

factor completely lost consistency in contrast to the integral geodesic. 

3.2 SDF Values Assignment 

Shapira et al. in [3] introduced the SDF that is a scalar function defined on the mesh surface 

to measure the local shape volume of a 3D mesh. For a given face of a mesh, the SDF sends 

cone-shaped rays (Fig. 5(a)) from the centroid of a face to its normal-opposite side (inward 

direction on the mesh).  Then, the length of a ray can be calculated by checking the ray-mesh 
intersections, and the scalar value of the SDF for the face calculated as the weighted average of 

all ray lengths.  

In our implementation, SDF is computed using a cone of angle 120  with 30 rays. We do 
not calculate SDF values for every face on the mesh, we only care about faces that are near the 

 
Fig. 4. Comparison between conformal factor and our topological structure 
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topological nodes. As shown in Fig. 5(b), assume that the red point is a topological node that 
we selected on a topological path (thick black line), and then we find the one vertex-ring face 

(yellow face) of the two blue points that construct the edge where the topological node resides. 

The topological node is assigned the average SDF value of these faces.  

After calculating all SDF values for topological nodes, to be compatible with 3D meshes in 

different scales and resolution, the SDF values are normalized as follow: 

         
       

        
                                                                  

Where         and          denote the original SDF value and the normalized SDF 

value for topological node s, and   denotes the surface of the mesh. Instead of using a 

logarithmized version [3], we normalize the SDF value by dividing it with the root area of the 
mesh. In reference [3], the reason for a normalized SDF value in log-space is that the author 

wants to enhance the importance of the small parts that have small SDF values, like fingers of 

a human model, to perform good segmentation of a 3D mesh. In our approach, our goal is not 
to do 3D segmentation. We did test with two normalizing functions, the result in section 4 

shows that our method works better. 

3.3 Matching Approach 

In the matching approach, we first calculate all dissimilarity distances among topological 

strings with node-by-node SDF values of two 3D models. Then, the Hungarian algorithm is 

used to find “minimum matching”. The Hungarian algorithm [21] is a combinatorial 
optimization algorithm that solves the assignment problem. Our matching approach is similar 

to [11] but different in the penalizing method. 

In calculating dissimilarity between two topological strings, if two topological strings have 
the same number of topological nodes, the dissimilarity can be calculated by averaging the 

differences between the corresponding SDF scalar values. If two topological strings have 
different lengths, we first append the shorter topological string with its last topological node to 

have the same length as the longer one. Then, we penalize these appended values by weighting. 

Let   and   be two topological strings, and let          denote the SDF value of the  th 

topological node starting from the protrusion tip on  . Assuming that   has more topological 

nodes than  , the dissimilarity between two topological strings is defined as: 

 
Fig. 5. (a) Cone-shaped rays sent to the inside of the mesh (b) Faces related to SDF values assignment. 
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where     denotes the number of topological nodes in a topological string, and   denotes 
the penalizing weights. Fig. 6 illustrates the comparison between two topological strings. In 

our experiments,       yields a good retrieval result. 

Let   and    be two 3D models. Assume that they have   and   topological strings, 

respectively. After comparing each topological string in   with each in  , we get a     

matrix with the dissimilarity values calculated using equation (3). To apply the Hungarian 

algorithm, the string dissimilarity matrix is required to be a square matrix. In the case 

of    , the Hungarian algorithm can be directly applied. If    , we pad the rows (or 
columns) of the string dissimilarity matrix with the mean of existing values of the columns (or 

rows). We also tested padding with max and min values; the result in section 4 shows that 

padding with mean values works best. Assuming that    , we can define an     string 

dissimilarity matrix as          , where             have the dissimilarity values 

of topological strings. The padding procedure is mathematically formulated as follow: 

                                           

 

   

                           

                      

 
Fig. 6. Comparison between two topological strings ( ,  ) with SDF values, where               

 
Fig. 7. Example of the string dissimilarity matrix when two models have 4 and 6 topological strings 

respectively. 
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For example, if there are two 3D models that have 4 and 6 topological strings, respectively, 
Fig. 7 shows the corresponding string dissimilarity matrix. 

Applying the Hungarian algorithm will return the “minimum matching” indexes. The final 

dissimilarity value between two models is the average of the indexed value of the dissimilarity 
matrix. 

4. Experimental Results 

In this section, we first test how the parameters affect the retrieval result of the proposed 

algorithm. Then, we compare our algorithm with other state-of-the-art methods by using the 

parameters that give the best retrieval performance. In the following experiments, if there is no 

notice of parameters:     and    is set as                  and                

    . Then, as the calculation of geodesic distances is computationally expensive, we first use 

QSlim [27] to simplify the mesh to 1500 faces. Retrieval accuracy is evaluated by following 

five quantitative measures and the precision-recall curve [22]:  

 Nearest Neighbor (NN): The percentage of best matches that belong to the query’s class. 

 First Tier (FT) and Second Tier (ST): The percentage of models belonging to the query’s 

class that appear within the top       and 2       matches where the number of 
models in the query’s class is K. 

 E-measure: A composite measure of the precision and recall for a fixed number (32) of 
retrieved models. 

 Discounted Cumulative Gain (DCG): A statistic that weights correct results near the front 
of the list more than correct results later in the ranked list. 

 Precision-Recall curve (P-R curve): Precision is the ratio of retrieved models that are 
relevant to a given query, while recall is the ratio of relevant models to a given query that 

have been retrieved from the total number of relevant models. Thus, a higher P-R curve 
indicates better retrieval performance. 

The five quantitative measures are in the range       and higher values indicate better 
retrieval performance. For more details about the metrics we refer readers to [22].  

We carry out experiments on the datasets of SHREC’ 15 Non-rigid 3D Shape Retrieval to 
test our parameters. The datasets of the SHREC’ 15 Non-rigid 3D Shape Retrieval [26] 

contain 1200 non-rigid models that are classified into 50 classes, each with 24 models. 

 

Table 1. Retrieval results from different                     on SHREC’ 15 Non-rigid 3D 

Shape Retrieval 

                Metrics 

       
NN FT ST E-measure DCG 

2 0.9325 0.6838 0.7901 0.6196 0.8913 

3 0.9725 0.8019 0.8878 0.7103 0.9462 

4 0.9808 0.7946 0.8811 0.7032 0.9455 

5 0.9733 0.7757 0.8666 0.6909 0.9363 

6 0.9708 0.7453 0.8470 0.6685 0.9268 
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Table 1 shows the retrieval results of our algorithm with various 

                   . We can see that when    , all metrics yields best result 

except NN that is slightly lower than when      . And when    , the results drop 

significantly, approximately 10% on each metric. When    is greater than 3, the results 

decrease as    increases. 

Table 2 shows the retrieval results of our algorithm with various 

                   . When       , all metrics yield the best results except NN that 

is slightly lower than when           . When    is greater or smaller than 0.75, the results 

decrease as    increases or decreases. 

 

Table 2. Retrieval results with different                     on SHREC’ 15 Non-rigid 3D 

Shape Retrieval 

                  Metrics 

       
NN FT ST E-measure DCG 

0.25 0.9625  0.7709  0.8697  0.6904  0.9333  

0.5 0.9775  0.7969  0.8874  0.7075  0.9448  

0.75 0.9725  0.8019  0.8878  0.7103  0.9462  

1 0.9725  0.7993  0.8872  0.7080  0.9450  

1.25 0.9742  0.7924  0.8846  0.7057  0.9438  

 

As described in Section 3.3, to apply the Hungarian algorithm, the string dissimilarity 
matrix must be a square matrix. When the topological string number of two models is not 

equal, we tested padding the matrix with min, mean and max value. From Table 3, we see that 
padding with the mean value yields the best retrieval result. 

 

Table 3. Retrieval results by padding the string dissimilarity matrix with min, mean and max values 

for SHREC’ 15 Non-rigid 3D Shape Retrieval 

                    Metrics 

 Padded 
NN FT ST E-measure DCG 

Min 0.9700 0.7752 0.8700 0.6918 0.9362 

Mean 0.9725 0.8019 0.8878 0.7103 0.9462 

Max 0.9683 0.7789 0.8741 0.6958 0.9376 

 

The results in the Table 4 show that the root-area SDF normalization method is more 

appropriate for our algorithm than the log-scale normalization method [3]. 

 
Table 4. Comparison between the log-scale SDF normalization method and the root-area SDF 

normalization method for SHREC’ 15 Non-rigid 3D Shape Retrieval 

               Metrics 

Normalization 
NN FT ST E-measure DCG 

Log-space 0.9408 0.7118 0.8126 0.6425 0.9015 

Root-area 0.9725 0.8019 0.8878 0.7103 0.9462 
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Because most of our algorithm is based on reference [11] (denoted as ConTopo++), we 
compare retrieval performance between two algorithms on the SHREC’11 Non-rigid 3D 
Watertight Meshes dataset [25]. In Table 5, Proposed_1500 and Proposed_6000 denote our 

algorithm performance when mesh faces are reduced to 1500 and 6000. From the table, we can 

see that higher resolution that requires a longer time to calculate integral geodesic, has better 

retrieval performance with our algorithm, and both perform better than ConTopo++ using five 
quantitative measures. There are two main reasons for better performance of our algorithm. 

First, as we mentioned in section 3.1, on some models that have significantly distorted places 

or unbalanced structure, the conformal factor is not as stable as geodesic distance. Second, 
when padding the string dissimilarity matrix, ConTopo++ used the difference between the 

numbers of strings in each model divided by their sum, while we padded with the mean of the 

already filled column-wised or row-wised string dissimilarity values. 

 
Table 5. Comparison between our algorithm and ConTopo++ on SHREC’11 Non-rigid 3D 

Watertight Meshes 

                    Metrics 

Methods 
NN FT ST E-measure DCG 

Proposed_1500 0.9933 0.9078 0.9746 0.7171 0.9823 

Proposed_6000 0.9983 0.9408 0.9913 0.7297 0.9902 

Contopo++ 0.9930 0.8850 0.9520 0.6950 0.9810 

 

In Fig. 8 and Fig. 10, we illustrate the P-R curve of the proposed method against the 
published results of the SHREC’11 Non-rigid 3D Watertight Meshes and SHREC’ 15 

Non-rigid 3D Shape Retrieval, respectively. The corresponding five quantitative measures are 

illustrated in Fig. 9 and Fig. 11 respectively using column charts. In Fig. 8 and Fig. 9, we can 
see that our Proposed_6000 and Proposed_1500 ranked second and third among the options 

for the SHREC’11 Non-rigid 3D Watertight Meshes. Fig. 10 and Fig. 11 illustrate that the 

retrieval performance of our methods ranked fourth and seventh among the options for 
SHREC’ 15 Non-rigid 3D Shape Retrieval. 

We implemented the proposed algorithm in Matlab on a personal computer with a 3.60 
GHz i7-4790 CPU, 8GB DDR3 memory. There are only two contestants on SHREC’ 15 

Non-rigid 3D Shape Retrieval wrote about their running time, Giachetti’s HAPT algorithm 

needs 3 min on average to extract a feature map of the tested dataset, and Limberger’s 
algorithm requires 18 seconds to compute three local descriptors on a model. In our method, 

most of this time is spent on calculating the integral geodesic. When we reduce the mesh to 

1500 faces and 6000 faces, it takes approximately 2 seconds and 25 seconds, respectively, to 
calculate integral geodesic by using parallel computation with 4 cores. For mesh matching that 

uses the Hungarian algorithm, it takes approximately 2 milliseconds for comparing between 

two meshes. 

Time complexity: The time complexity of the proposed method can be broken down into 
three parts: (1) For construscting topological structure, integral geodesic computation requires 

         where the   is number of the vertex in the mesh, and extracting protrusion tips cost 

    . (2) Computation of SDF value cost               where     is number of faces 

near topological nodes,     is usually around 10, and      is number of rays used to compute 

SDF,      is set as 30 in our experiments. (3) The computation of similarty between two 3D 
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models by using the Hungarian Algorithm require         where     is max topological 

string number between two 3D models,     is less than 10 in most cases. Thus, the overall 

time complexity is                               . 

Data storage space: Each topological node is assigned with a double-precision SDF value 
which occupy 8 bytes, and the average number of topological nodes in a 3D models on 

SHREC’ 15 Non-rigid 3D Shape Retrieval (1200 3D models) with threshold    

                 and                        is 64, so our topological structure 

and SDF value based descriptor  of a 3D model only need          bytes data storage 
space. 

5. Conclusion 

In this paper, we developed an efficient and effective method for the retrieval of non-rigid 

3D models mainly based on geodesic distance and SDF that are two pose-invariant features on 

the mesh surface. The experiment on the SHREC’11 Non-rigid 3D Watertight Meshes and 
SHREC’ 15 Non-rigid 3D Shape Retrieval shows that our method has higher retrieval 

accuracy than many of the state-of-the-art non-rigid 3D model descriptors. Furthermore, our 

method has the advantage of short running time and small data storage space required for 

descriptors. 

In the future work, considering about the recent deep learning boom, we plan to extract 
topology and features from 3D models by applying some deep learning method to further 

improve the performance of the non-rigid 3D model retrieval. 

 

 
Fig. 8. Comparative results based on the five standard measures for the 

SHREC’11 Non-rigid 3D Watertight Meshes 
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Fig. 9. Comparative results based on the P-R curves for the SHREC’11 Non-rigid 3D 

Watertight Meshes  

 
Fig. 10. Comparative results based on the five standard measures for the 

SHREC’15 Non-rigid 3D Shape Retrieval 
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