• Title/Summary/Keyword: Topographic map

Search Result 472, Processing Time 0.021 seconds

Acquisition of Large Scale Geographical Information by Remote Control of Non-Metric Camera (비측정용 카메라의 원격조종에 의한 대축척 지형정보 획득)

  • Kang, Joon-Mook;Yoon, Hee-Cheon;Bae, Yeon-Soung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.1 no.2 s.2
    • /
    • pp.177-184
    • /
    • 1993
  • To obtain large scale precise geographical information in local area we determined external orientation parameters of camn exactly and conducted aerial photography using remote control airship loaded 35mm non-metric camera that produced systematic error coefficients. Ground control Points were determined by differential GPS. Therefore we can try to improve accuracy and economical efficiency. Also, it is suggested that remote control airship photogrammetry can be applied to make large scale topographic map using analytical plotter as calibrated accuracy.

  • PDF

The Study of Burned-Area Analysis Method for Forest-fire Damaged Area - Investigation for ImSil County, GyeongJu City - (산불피해 현장답사를 통한 연소면적 산출 연구 - 임실, 경주 산불을 중심으로 -)

  • Kang, Seo-Young;Lee, Jung-Yun;Kim, Hong
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.176-181
    • /
    • 2012
  • In this research the 2009 spring occurred during forest fire ImSil and research destination GyeongJu has been selected. Research in the field of the target time exploratory Boundary Data through after air photos, satellite photos and topographic map by using the combustion area was calculated. 2009 March 1-forest fire occurs on the day of the weather information and weather changes wildfire in the check in any affected. Study research destination of combustion is ImSil 161 ha, GyeongJu 270.93 ha. The impact of the weather-temperature dry weather forest fires this favorable situation to occur and the wind directions and the spread of the mountain wind speed was less impact has no arguments.

A Study on Winter-Covered Optical Satellite Imagery for Post-Eire Forest Monitoring

  • Kim, Choen;Park, Seung-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.274-274
    • /
    • 2002
  • Damage to forest trees, caused by wildfire, changes their spectral reflectance signature. This factor led to the initiation of a research project at the Remote Sensing & GIS Laboratory, Kookmin University, to determine if multispectral data acquired by IKONOS could provide fire scar and bum severity mapping. This paper will present detail mapping of burned areas in the eastern coast of Korea with IKONOS imagery. In addition, a single post-burn Landsat-7 ETM+ data was used to compare with IKONOS, the study area. Burn severity map based on IKONOS image was found to be affected by strong topographic illumination effects in the mountain forest. But it has better the delineation of the bum-scarred area. In this study the NDVI was analyzed for geometric illumination conditions influenced by topography(slop, aspect and elevation) and shadow(solar elevation and azimuth angle).

  • PDF

Evaluating Flood Risk Area using GIS and RADARSAT Data-A Case Study in Northeast Thailand

  • Mongkolsawat, C.;Thirangoon, P.;Suwanwerakamtorn, R.;Karladee, N.;Paiboonsak, S.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.7-9
    • /
    • 2003
  • The objective of this study is to evaluate flood risk area by integrating GIS and RADARSAT data. The study area, Northeast Thailand, is subject to flood during the rainy season. The main data used in this evaluation included RADARSAT data, landform and topographic map. The evaluation was conducted by overlay operation of flood area in 2001, land form and buffer region beyond the flood areas with the selection criteria defined. Most of the flood risk areas were found in the low lying land form within the buffer region. The cloud penetrating capabilities of SAR is only a source of information for effectively assessment of flood risk area in Northeast Thailand.

  • PDF

A Proposal for Generation of Digital Elevation Models in Korea

  • Lee, Chang-Kyung;Park, Byung-Gil;Kim, Young-An;Min Heo
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.02a
    • /
    • pp.73-81
    • /
    • 2004
  • National Geographic Information Institute (NGII) in Korea, through National Geographic Information System (NGIS) Program, has prepared to generate and disseminate digital elevation data for Korea. This is a pilot research to propose a policy for generation, maintenance, and supply of Korea Digital Elevation Data (KDED). Customer demands for accuracy and resolution of DEM was surveyed through questionnaire. In order to investigate the quality, the technical efficiency and the production cost, a tentative DEM in a small test site was generated based on digital topographic maps (original paper map scale 1 :5,000), analytical plotter, and LIDAR. Accuracy standard for KDED was derived based on source data and generation methods. As results of this research, we recommend uniformly spaced grid model for KDED. Its preferable grid space is 5m in urban and its vicinity; and 10m in field and mountainous area. LIDAR has been valuated as a proper KDED generation method fulfilling customers demand for the accuracy.

  • PDF

Automatic Generation of a SPOT DEM: Towards Coastal Disaster Monitoring

  • Kim, Seung-Bum;Kang, Suk-Kuh
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.2
    • /
    • pp.121-129
    • /
    • 2001
  • A DEM(digital elevation model) is generated from a SPOT panchromatic stereo-pair using automated algorithms over a 8 km$\times$10 km region around Mokpo city. The aims are to continue the accuracy assessment over diverse conditions and to examine the applicability of a SPOT DEM for coastal disaster monitoring. The accuracy is assessed with respect to three reference data sets: 10 global positioning system records, 19 leveling data, and 1:50,000 topography map. The planimetric error is 10.6m r.m.s. and the elevation erroer ranges from 12.4m to 14.4m r.m.s.. The DEM accuracy of the flat Mokpo region is consistent with that over a mountainous area, which supports the robustness of the algorithms. It was found that coordinate transformation errors are significant at a few meters when using the data from leveling and topographic maps. The error budget is greater than the requirements for coastal disaster monitoring. Exploiting that a sub-scene is used, the affine transformation improves the accuracy by 50% during the camera modeling.

Applications of Landsat Imagery and Digital Terrain Model Data to River Basin Analyses (Landsat 영상과 DTM 자료의 하천유역 해석에의 응용기법 개발)

  • 조성익;박경윤;최규홍;최원식
    • Korean Journal of Remote Sensing
    • /
    • v.2 no.2
    • /
    • pp.117-131
    • /
    • 1986
  • The purpose of this study was to develop techniques acquiring hydrologic parameters that affect runoff conditions from Landsat imagery. Runoff conditions in a study area were analyzed by employing the U.S. Soil Conservation Service(SCS) Method. SCS runoff curve numbers(CN) were estimated by the computer analysis of Landsat imagery and digiral terrain model(DTM) data. The SCS Method requires land use/cover and soil conditions of the area as input parameters. A land use/cover map of 5 hydrological classes was produced from the Landsat multi-spectral scannerr imagery. Slope-gradient and contour and contour maps were also made using the DTM topographic data. Inundation areas depending on reservoir levels were able to be mapped on the Landsat scene by combining the contour data.

A Study on SPOT and DEM Data as Input to Geographic Information System Applying to an Inaccessible Region

  • Kim, Eui-Hong;Lee, Kyoo-Seock;Chung, Mong-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.3 no.2
    • /
    • pp.103-113
    • /
    • 1987
  • The two key elements of the Geographic Information System(GIS) are (1) Data base management of land resources information as computer files, and (2) Software ability to analyze and map this information. More geometrically corrected SPOT derived land cover information and digital topographic infornation from digitial elevation model (DEM) were integrated as input data of GIS in order to create landscape modelling. The ultimate goal of this GIS is to establish the use of physiographic data as an intergral part of the comprehensive planning process in order to avoid significant environmental and economic problems.

Geostatistical Integration of Different Sources of Elevation and its Effect on Landslide Hazard Mapping

  • Park, No-Wook;Kyriakidis, Phaedon C.
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.453-462
    • /
    • 2008
  • The objective of this paper is to compare the prediction performances of different landslide hazard maps based on topographic data stemming from different sources of elevation. The geostatistical framework of kriging, which can properly integrate spatial data with different accuracy, is applied for generating more reliable elevation estimates from both sparse elevation spot heights and exhaustive ASTER-based elevation values. A case study from Boeun, Korea illustrates that the integration of elevation and slope maps derived from different data yielded different prediction performances for landslide hazard mapping. The landslide hazard map constructed by using the elevation and the associated slope maps based on geostatistical integration of spot heights and ASTER-based elevation resulted in the best prediction performance. Landslide hazard mapping using elevation and slope maps derived from the interpolation of only sparse spot heights showed the worst prediction performance.

An Analysis of Shifting Cultivation Areas in Luang Prabang Province, Lao PDR, Using Satellite Imagery and Geographic Information Systems (위성영상과 지리정보시스템을 이용한 라오스 루앙프라방 지역의 화전지역 분석)

  • 조명희
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.1
    • /
    • pp.43-53
    • /
    • 1994
  • By Using MOS-1 satellite image(taken on 24 April 1990, after slash and burn), Shifting cultivation areas were estimated for the sub-basin area. In tropical region to analyse the correlation between shifting cultivation rate and bifurcation rate network which was calculated from topographic map, PC Arc - Info and IDRISI GIS software were used. As the distribution rate of shifting cultivation increases, the bifurcation rate is high. From the correlation analysis between the shifting cultivation and drainage network, it was found that shifting cultivation leads to land degradation and head erosion at the stream valley. To prevent such problems, it is mecessary that shifting cultivation areas should be converted to permanent paddy fields.