• Title/Summary/Keyword: Topic network analysis

Search Result 396, Processing Time 0.025 seconds

A Survey of Arabic Thematic Sentiment Analysis Based on Topic Modeling

  • Basabain, Seham
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.155-162
    • /
    • 2021
  • The expansion of the world wide web has led to a huge amount of user generated content over different forums and social media platforms, these rich data resources offer the opportunity to reflect, and track changing public sentiments and help to develop proactive reactions strategies for decision and policy makers. Analysis of public emotions and opinions towards events and sentimental trends can help to address unforeseen areas of public concerns. The need of developing systems to analyze these sentiments and the topics behind them has emerged tremendously. While most existing works reported in the literature have been carried out in English, this paper, in contrast, aims to review recent research works in Arabic language in the field of thematic sentiment analysis and which techniques they have utilized to accomplish this task. The findings show that the prevailing techniques in Arabic topic-based sentiment analysis are based on traditional approaches and machine learning methods. In addition, it has been found that considerably limited recent studies have utilized deep learning approaches to build high performance models.

Topic Based Hierarchical Network Analysis for Entrepreneur Using Text Mining (텍스트 마이닝을 이용한 주제기반의 기업인 네트워크 계층 분석)

  • Lee, Donghun;Kim, Yonghwa;Kim, Kwanho
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.3
    • /
    • pp.33-49
    • /
    • 2018
  • The importance of convergence activities among business is increasing due to the necessity of designing and developing new products to satisfy various customers' needs. In particular, decision makers such as CEOs are required to participate in networks between entrepreneurs for being connected with valuable convergence partners. Moreover, it is important for entrepreneurs not only to make a large number of network connections, but also to understand the networking relationship with entrepreneurs with similar topic information. However, there is a difficult limit in collecting the topic information that can show the lack of current status of business and the technology and characteristics of entrepreneur in industry sector. In this paper, we solve these problems through the topic extraction method and analyze the business network in three aspects. Specifically, there are C, S, T-Layer models, and each model analyzes amount of entrepreneurs relationship, network centrality, and topic similarity. As a result of experiments using real data, entrepreneur need to activate network by connecting high centrality entrepreneur when the corporate relationship is low. In addition, we confirmed through experiments that there is a need to activate the topic-based network when topic similarity is low between entrepreneurs.

Investigating the Trends of Research for the Small Business Owners (소상공인 연구 동향 분석)

  • Bang, Mi-Hyun;Lee, Young-Min
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.73-80
    • /
    • 2022
  • In this study, prior studies of 280 small business owners in Korea over the past two decades were comprehensively analyzed through keyword network and LDA topic modeling analysis, and overall views and trends in academia were examined. As core keywords, "sales" and "protection," which conflict with each other but are essential for stable and sustainable growth were selected, and 7 topics (Topic 1: start-up, topic 2: digital, topic 3: tax system, topic 4: capability, topic 5: coexistence, topic 6: regulation, and topic 7: funding) were drawn up. Based on the results of the analysis, the need to improve digital maturity for the continued growth and development of small business owners was raised, and the response at the pan-ministerial level and the stability of the performance of functions that can survive even after the new administration to solve the economic damage problems facing small business owners were suggested. In addition, attention to the long-term, speed, detail, and direction of government support in a new way, and a flexible approach to the negative way in which pre-allowance and post-regulation is given were suggested.

Images of Nurses Appeared in Media Reports Before and After Outbreak of COVID-19: Text Network Analysis and Topic Modeling (COVID-19 발생 전·후 언론보도에 나타난 간호사 이미지에 대한 텍스트 네트워크 분석 및 토픽 모델링)

  • Park, Min Young;Jeong, Seok Hee;Kim, Hee Sun;Lee, Eun Jee
    • Journal of Korean Academy of Nursing
    • /
    • v.52 no.3
    • /
    • pp.291-307
    • /
    • 2022
  • Purpose: The aims of study were to identify the main keywords, the network structure, and the main topics of press articles related to nurses that have appeared in media reports. Methods: Data were media articles related to the topic "nurse" reported in 16 central media within a one-year period spanning July 1, 2019 to June 30, 2020. Data were collected from the Big Kinds database. A total of 7,800 articles were searched, and 1,038 were used for the final analysis. Text network analysis and topic modeling were performed using NetMiner 4.4. Results: The number of media reports related to nurses increased by 3.86 times after the novel coronavirus (COVID-19) outbreak compared to prior. Pre- and post-COVID-19 network characteristics were density 0.002, 0.001; average degree 4.63, 4.92; and average distance 4.25, 4.01, respectively. Four topics were derived before and after the COVID-19 outbreak, respectively. Pre-COVID-19 example topics are "a nurse who committed suicide because she could not withstand the Taewoom at work" and "a nurse as a perpetrator of a newborn abuse case," while post-COVID-19 examples are "a nurse as a victim of COVID-19," "a nurse working with the support of the people," and "a nurse as a top contributor and a warrior to protect from COVID-19." Conclusion: Topic modeling shows that topics become more positive after the COVID-19 outbreak. Individual nurses and nursing organizations should continuously monitor and conduct further research on nurses' image.

Bibliometric Analysis to Analyze Topic Areas of Faculty for Academic Library Service (대학도서관 서비스를 위한 서지분석기반 학과의 주제적 특성 분석 연구)

  • Choi, Sanghee
    • Journal of the Korean Society for information Management
    • /
    • v.30 no.1
    • /
    • pp.237-258
    • /
    • 2013
  • As topics of researchers become diverse horizontally or vertically, academic libraries have difficulties to identify the dynamic change of researchers' needs for academic publications. This research aims to illustrate the topic areas of researchers in a department of university by analyzing bibliographies of their publications. First, researchers' publications were used to discover the topic areas where the researchers had published. Second, the cited publications in those papers were analysed to identify the expanded topic areas of these researchers. Finally, highly cited journals were analyzed by network analysis method. The major finding is that the importance of topic areas by the number of journals was not necessarily proportional to that by the number of papers. Researchers have a tendency to use many papers in a small number of journals in a certain topic area. Furthermore, the importance of topic areas discovered by researchers' publications was not the same as that discovered by researchers' citations.

XAI Research Trends Using Social Network Analysis and Topic Modeling (소셜 네트워크 분석과 토픽 모델링을 활용한 설명 가능 인공지능 연구 동향 분석)

  • Gun-doo Moon;Kyoung-jae Kim
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.1
    • /
    • pp.53-70
    • /
    • 2023
  • Artificial intelligence has become familiar with modern society, not the distant future. As artificial intelligence and machine learning developed more highly and became more complicated, it became difficult for people to grasp its structure and the basis for decision-making. It is because machine learning only shows results, not the whole processes. As artificial intelligence developed and became more common, people wanted the explanation which could provide them the trust on artificial intelligence. This study recognized the necessity and importance of explainable artificial intelligence, XAI, and examined the trends of XAI research by analyzing social networks and analyzing topics with IEEE published from 2004, when the concept of artificial intelligence was defined, to 2022. Through social network analysis, the overall pattern of nodes can be found in a large number of documents and the connection between keywords shows the meaning of the relationship structure, and topic modeling can identify more objective topics by extracting keywords from unstructured data and setting topics. Both analysis methods are suitable for trend analysis. As a result of the analysis, it was found that XAI's application is gradually expanding in various fields as well as machine learning and deep learning.

Topic Modeling and Keyword Network Analysis of News Articles Related to Nurses before and after "the Thanks to You Challenge" during the COVID-19 Pandemic (COVID-19 '덕분에 챌린지' 전후 간호사 관련 뉴스 기사의 토픽 모델링 및 키워드 네트워크 분석)

  • Yun, Eun Kyoung;Kim, Jung Ok;Byun, Hye Min;Lee, Guk Geun
    • Journal of Korean Academy of Nursing
    • /
    • v.51 no.4
    • /
    • pp.442-453
    • /
    • 2021
  • Purpose: This study was conducted to assess public awareness and policy challenges faced by practicing nurses. Methods: After collecting nurse-related news articles published before and after 'the Thanks to You Challenge' campaign (between December 31, 2019, and July 15, 2020), keywords were extracted via preprocessing. A three-step method keyword analysis, latent Dirichlet allocation topic modeling, and keyword network analysis was used to examine the text and the structure of the selected news articles. Results: Top 30 keywords with similar occurrences were collected before and after the campaign. The five dominant topics before the campaign were: pandemic, infection of medical staff, local transmission, medical resources, and return of overseas Koreans. After the campaign, the topics 'infection of medical staff' and 'return of overseas Koreans' disappeared, but 'the Thanks to You Challenge' emerged as a dominant topic. A keyword network analysis revealed that the word of nurse was linked with keywords like thanks and campaign, through the word of sacrifice. These words formed interrelated domains of 'the Thanks to You Challenge' topic. Conclusion: The findings of this study can provide useful information for understanding various issues and social perspectives on COVID-19 nursing. The major themes of news reports lagged behind the real problems faced by nurses in COVID-19 crisis. While the press tends to focus on heroism and whole society, issues and policies mutually beneficial to public and nursing need to be further explored and enhanced by nurses.

Research of Patent Technology Trends in Textile Materials: Text Mining Methodology Using DETM & STM (섬유소재 분야 특허 기술 동향 분석: DETM & STM 텍스트마이닝 방법론 활용)

  • Lee, Hyun Sang;Jo, Bo Geun;Oh, Se Hwan;Ha, Sung Ho
    • The Journal of Information Systems
    • /
    • v.30 no.3
    • /
    • pp.201-216
    • /
    • 2021
  • Purpose The purpose of this study is to analyze the trend of patent technology in textile materials using text mining methodology based on Dynamic Embedded Topic Model and Structural Topic Model. It is expected that this study will have positive impact on revitalizing and developing textile materials industry as finding out technology trends. Design/methodology/approach The data used in this study is 866 domestic patent text data in textile material from 1974 to 2020. In order to analyze technology trends from various aspect, Dynamic Embedded Topic Model and Structural Topic Model mechanism were used. The word embedding technique used in DETM is the GloVe technique. For Stable learning of topic modeling, amortized variational inference was performed based on the Recurrent Neural Network. Findings As a result of this analysis, it was found that 'manufacture' topics had the largest share among the six topics. Keyword trend analysis found the fact that natural and nanotechnology have recently been attracting attention. The metadata analysis results showed that manufacture technologies could have a high probability of patent registration in entire time series, but the analysis results in recent years showed that the trend of elasticity and safety technology is increasing.

An Exploratory Study on the Policy for Facilitating of Health Behaviors Related to Particulate Matter: Using Topic and Semantic Network Analysis of Media Text (미세먼지 관련 건강행위 강화를 위한 정책의 탐색적 연구: 미디어 정보의 토픽 및 의미연결망 분석을 활용하여)

  • Byun, Hye Min;Park, You Jin;Yun, Eun Kyoung
    • Journal of Korean Academy of Nursing
    • /
    • v.51 no.1
    • /
    • pp.68-79
    • /
    • 2021
  • Purpose: This study aimed to analyze the mass and social media contents and structures related to particulate matter before and after the policy enforcement of the comprehensive countermeasures for particulate matter, derive nursing implications, and provide a basis for designing health policies. Methods: After crawling online news articles and posts on social networking sites before and after policy enforcement with particulate matter as keywords, we conducted topic and semantic network analysis using TEXTOM, R, and UCINET 6. Results: In topic analysis, behavior tips was the common main topic in both media before and after the policy enforcement. After the policy enforcement, influence on health disappeared from the main topics due to increased reports about reduction measures and government in mass media, whereas influence on health appeared as the main topic in social media. However semantic network analysis confirmed that social media had much number of nodes and links and lower centrality than mass media, leaving substantial information that was not organically connected and unstructured. Conclusion: Understanding of particulate matter policy and implications influence health, as well as gaps in the needs and use of health information, should be integrated with leadership and supports in the nurses' care of vulnerable patients and public health promotion.

Topics and Trends in Metadata Research

  • Oh, Jung Sun;Park, Ok Nam
    • Journal of Information Science Theory and Practice
    • /
    • v.6 no.4
    • /
    • pp.39-53
    • /
    • 2018
  • While the body of research on metadata has grown substantially, there has been a lack of systematic analysis of the field of metadata. In this study, we attempt to fill this gap by examining metadata literature spanning the past 20 years. With the combination of a text mining technique, topic modeling, and network analysis, we analyzed 2,713 scholarly papers on metadata published between 1995 and 2014 and identified main topics and trends in metadata research. As the result of topic modeling, 20 topics were discovered and, among those, the most prominent topics were reviewed in detail. In addition, the changes over time in the topic composition, in terms of both the relative topic proportions and the structure of topic networks, were traced to find past and emerging trends in research. The results show that a number of core themes in metadata research have been established over the past decades and the field has advanced, embracing and responding to the dynamic changes in information environments as well as new developments in the professional field.