• Title/Summary/Keyword: Tooth modification

Search Result 101, Processing Time 0.033 seconds

Dynamic Analysis of Gear System Using G.U.I. Program (G.U.I. 프로그램을 이용한 기어 시스템의 동적 해석)

  • 박왕준;윤구영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.857-860
    • /
    • 1996
  • The area of gear dynamics has recently been the focus of many studies. A new tooth profile modification was proposed by author for reducing vibration and noise of involute gears. A comparative dynamic analysis of the gear drive with the involute tooth and the modified tooth profile(using cubic splines) is performed to the unuformal transmission error reduces the gear vibration and noise due to less dynamic tooth load variation during the meshing cycle. This work also include a gear design process by the meaning of a practical approach, such as Win95 based simulation program with all using basic geardesign variables. Especially this program enables gear designers to dynamic analysis based on G.U.I.

  • PDF

Study on Effect of Micro Tooth Shape Modification on Power Transmission Characteristics based on the Driving Gear of Rotating Machining Unit (마이크로 치형수정이 선회가공 유닛 구동기어의 동력전달 특성에 미치는 영향에 관한 연구)

  • Jang, Jeong-Hwan;Qin, Zhen;Kim, Dong-Seon;Wu, Yu-Ting;Lyu, Sung Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.91-97
    • /
    • 2019
  • Rotating machining unit is a revolutionary product that can process worm shaft or spiral shaft with fast and precise, a rotary type cutting tool, which is attached to automatic lathe and processes spiral groove on outer circumference of round bar. In this work, a study on micro tooth shape modification method of driving gear train in the rotating machining unit was presented. To observe the effect on power transmission characteristics of the driving gear pair, visualize the gear meshing condition and the load distribution on the gear teeth by using the professional gear train analysis program RomaxDesigner. By comparing the repeated analysis results, the effect of micro tooth shape modification on power transmission characteristics on driving gear can be summarized. The optimized gears were fabricated and measured by precision tester as a validation in this research.

Pre-prosthetic minor tooth movement with elastic separating ring & provisional restoration modification: case report (교정용 고무 링의 삽입과 임시 전장관의 수정을 통한 보철 수복 전 인접면 공간 획득: 증례보고)

  • Shin, Han-Eol;Roh, Byoung-Duck;Shin, Yoo-Seok;Lee, Chan-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.2
    • /
    • pp.114-118
    • /
    • 2012
  • Proximal caries or coronal defect in posterior teeth may result in the loss of proximal space and drifting of neighboring teeth, which makes restoration difficult. Inability to restore proper contours and to align tooth axis properly are commonly encountered problems when planning tooth restoration. Moreover, tilted teeth aggravate periodontal tissue breakdown, such as pseudo-pocket, and angular osseous defect. The purpose of this case presentation is to describe a simple technique for inducing minor tooth movement with orthodontic separating ring and provisional restoration modification. This method was used to create crown placement space on mesially tilted molar. This method is easy, simple and efficient technique which could be used in interproximal space gaining in selected situation.

Profile-shifted Gears in Multi-axial Differential System (다축차동장치의 전위기어 해석)

  • Kang, Dong-Soo;Song, Chul-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.632-637
    • /
    • 2011
  • A new tooth profile which is adjusted on the amount of addendum modification factor is proposed for reducing vibration and noise of gears. The transmission error of the new profile can be designed more uniformly than that of the standard involute profile. The basic concepts of tooth profile modification are to reduce the load in contact area and to find the appropriate profile modification factor for operation condition. In this study, gears were estimated to constructive safety of bending strength and contact strength durability by using ROMAX program, and were compared with results by design formula of AGMA standard.

A Study on Tooth Profile Modification of Planetary Reducer for 120kW Class Monorail (120kW급 모노레일용 유성기어감속기의 치형수정에 관한 연구)

  • Jeong, Yeong-Sik;Kim, Nam-Kyung;Xu, Zhezhu;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.195-200
    • /
    • 2012
  • In this study, parameters and requirements of an 120kW class monorail planetary gearbox was analysed and the adaptive planetary gearbox design was selected. The specification of the sun gear, planetary gear and carrier was set and the profile & lead was optimized. The mechanical efficiency of the optimized one and the original one was observed. Dynamo-tester system was used to observe the mechanical efficiency of the planetary gearbox. A dynamo unit was connected with the planetary gearbox which straightened through the motor by a coupling. The standard tooth shape planetary gearbox and modified tooth shape planetary gearbox were used as test pieces and the rotation speed was set from 600 to 6000rpm with 600rpm, 2.5min one step. In order to check the mechanical efficiency of the planetary gearbox, the tests were done as follows. 1) The power loss between driving motor and dynamo tester. 2) Temperature variation by different rotation speeds. 3) Noise variation by different rotation speeds.

The Study for Estimation of the Surface Temperature Rise in Spur Gear Tooth (Spur Gear 치면의 표면상승온도 예측에 관한 연구)

  • 김희진;구영필;조용주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.331-337
    • /
    • 2001
  • A numerical simulation of the temperature rise for sliding surface in dry contact is based on Jaegers formula combined with a calculated heat input. A gear tooth temperature analysis was performed. The pressure distribution has the Hertzian pressure distribution on the heat source. The heat partition factor is calculated along ling of action. A Temperature distribution of tooth surface is calculated about before and after profile modification. A Temperature of addendum and deddendum in modified gear have reduced.

  • PDF

Analysis of Kinematics and Tooth Profile in Harmonic Drive (주속식 감속기의 운동학 및 치형해석)

  • 전완주
    • Tribology and Lubricants
    • /
    • v.4 no.2
    • /
    • pp.60-67
    • /
    • 1988
  • Conventional theory of gear mechanism can't be applied to analyze the harmonic drive due to specific movement of the teeth. This paper deals with an analysis of kinematics and geometry of the tooth engagement of a harmonic drive comprising circular spline, flexspline and wave generator. A theoretical new tooth profile of the flexspline in meshing internal rigid gear with involute profile is obtained. Characteristics of harmonic drive reducer are shown according to parameters such as deviation coefficient, deviation distance, addendum modification coefficient. As an example, the design of harmonic drive with 1:80 reduction ratio is presented.

Study of the Transmission Error Prediction of a Five-speed Manual Transmission System (5속 수동 트랜스미션의 전달오차 예측에 관한 연구)

  • Cho, Sang-Pil;Lee, Dong-Gyu;Kim, Lae-Sung;Xu, Zhe-zhu;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.66-71
    • /
    • 2016
  • For the manual transmission gearbox used in the automotive industry, gear meshing transmission error is the main source of noise known as gear whine, and radiated gear whine noise plays an important role in the whole gearbox. Therefore, in order to keep competitive in the automotive market, the NVH performance of transmission gearboxes is increasingly important for automotive manufacturers when a new product is developed. In this paper, in order to achieve an optimized tooth contact pattern, gear tooth modification is applied to make up for the deformation of the teeth owing to load. A five-speed MT gearbox is firstly modeled in RomaxDesign software and the prediction of transmission error under the loaded torques is studied and compared. From the simulation, the transmission error and maximum contact stress are also simulated and compared after tooth modification of the loaded torques. Finally, the simulation results are used to optimize the whole gearbox design and the final gearbox prototype is testified to obtain NVH performance in a semi-anechoic room.

A Study on Correction of the Gear Tooth Profile Error by Finish Roll Forming (전조가공을 이용한 기어의 치형오차수정에 관한 연구)

  • Lyu Sung-Ki;Uematsu Seizo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.159-166
    • /
    • 2005
  • This study deals with the correction of gear tooth profile error by finish roll forming. First, we experimentally confirmed that the tooth profile error is a synthesis of the concave error and the pressure angle error. Since various types of tooth profile errors appear in the experiments, we introduced evaluation parameters for rolling gears to objectively evaluate profile quality. Using these evaluation parameters, we clarified the relationship among the tooth profile error, the addendum modification factor (A. M. factor), and the tool loading force. We verified the character of concave error, pressure angle error, tool loading force and number of cycles of finish roll forming by using a forced displacement method. This study makes clear that tool loading force and number of cycles of finish roll forming are very important factors that affect involute tooth profile error. The results of the experiment and analysis show that the proposed method reduces concave and pressure angle errors.

The effect of addendum modification on bearing load in marine reduction gears (박용함속치차장치에서 전위가 베어링하중에 미치는 영향)

  • 민우홍
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.74-80
    • /
    • 1984
  • In the reduction gears for marine propulsion engine such as turbine or high speed diesel engine, the standard involute double helical gears are generally used. However the addendum modification gear can be used in the reduction gear as it has flexibility for gear design on the tooth strength, scoring and operating noise. In this case, the determination of gear shaft bearing load is difficult by the alternation of operating pressure angle. In this paper, the formulas of bearing load according to the arrangements of the reduction gears are derived and the diagrams of operating pressure angle according to the modification coefficient are presented.

  • PDF