• Title/Summary/Keyword: Tooth Profile Machining

Search Result 16, Processing Time 0.024 seconds

Analysis of Tooth Profile Accuracy of Enveloping Worm Thread Depending on End Mill Tool Shape (장구형 웜 나사의 절삭 엔드밀 공구 형상에 따른 치형 정밀도 분석)

  • Kang, S.J.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.28 no.4
    • /
    • pp.183-189
    • /
    • 2019
  • Cylindrical worm reducers are generally used in various fields and forms throughout the industry, and demand is increasing due to their role as an integral part of the industry. Market trends require high-load, high-precision components, and small-sized reducers with large loads. When using a cylindrical worm reducer, a reducer designed with a reduced center distance while maintaining the same output torque results in gear wear. To overcome this difficulty, an enveloping worm gear reducer is introduced and studied. In this paper, three types of end mill tools are used to evaluate the tooth profile accuracy for each tool shape during machining of the tooth profile for a non-developed surface worm thread. The effect of the endmill shape on the accuracy of the tooth profile was analyzed by performing 3D modeling of the surrounding worm tooth profile based on the Hindley method. In this study, we analyzed tooth profile accuracy, tooth surface roughness, and tooth surface machining time, etc. Through the study, efficient machining conditions for the enveloping worm gears and the influence of parameters on the process were presented.

Double Enveloping Worm Thread Tooth Machining Study using Full Face Contact Cutting Tool (전체면 접촉 절삭공구를 이용한 장구형 웜나사 치형가공 연구)

  • Kang, S.J.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.29 no.3
    • /
    • pp.144-150
    • /
    • 2020
  • In this paper, we propose the generation of a double enveloping worm thread profile with a non-developable ruled surface. Thread surface machining cuts all the way from the tip to the tooth root at one time, like full-face contact machining, rather than cutting several times like point machining. This cutting can reduce the cutting duration and achieve the smooth surface that does not require a grinding process for the threaded surface. The mathematical model of the cutting process was developed from theoretical equations, and the tooth surface was generated using two parameters and modeled in the CATIA using the generated Excel data. Additionally, the machining process of the worm was simulated in a numerical control simulation system. To verify the validity of the proposed method, the deviation between the modeling and the workpiece was measured using a 3D measuring machine.

Design of Gerotor with Pin-tooth Inner Rotor (핀치형 내부로터의 제로터 설계)

  • Lee, Sung-chul
    • Tribology and Lubricants
    • /
    • v.36 no.2
    • /
    • pp.64-67
    • /
    • 2020
  • In the conventional gerotor design, the circular arc tooth of the outer rotor is first introduced, and then the inner rotor profile is generated by simulating the outer rotor motion while the inner rotor is fixed. The profile generation of tooth meshing exhibits relativity; therefore, the outer rotor profile can be generated by the movement of the inner rotor. In this study, we propose the design of a gerotor with a pin-tooth inner rotor. First, the pin-tooth inner rotor is devised, and then the outer rotor profile is generated. The profile of the inner rotor is simply composed of equally arranged pins along a circle. The root of the inner rotor is designed as a conjugated arc of two pins. The trajectory of the pin center is obtained by the inner rotor operation, and then the outer rotor profile is determined as a parallel curve of the trajectory. In this gerotor design, the inner rotor has a simple configuration, and contact occurs between the pin parts of the inner rotor and the whole profile of the outer rotor. This affects the material selection and machining process. The pin tooth can be used to design the outer and inner rotors, enabling a double gerotor mechanism corresponding to a planetary gear system.

Applying an Artificial Neural Network to the Control System for Electrochemical Gear-Tooth Profile Modifications

  • Jianjun, Yi;Yifeng, Guan;Baiyang, Ji;Bin, Yu;Jinxiang, Dong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.4
    • /
    • pp.27-32
    • /
    • 2007
  • Gears, crucial components in modern precision machinery for power transmission mechanisms, are required to have low contacting noise with high torque transmission, which makes the use of gear-tooth profile modifications and gear-tooth surface crowning extremely efficient and valuable. Due to the shortcomings of current techniques, such as manual rectification, mechanical modification, and numerically controlled rectification, we propose a novel electrochemical gear-tooth profile modification method based on an artificial neural network control technique. The fundamentals of electrochemical tooth-profile modifications based on real-time control and a mathematical model of the process are discussed in detail. Due to the complex and uncertain relationships among the machining parameters of electrochemical tooth-profile modification processes, we used an artificial neural network to determine the required processing electric current as the tooth-profile modification requirements were supplied. The system was implemented and a practical example was used to demonstrate that this technology is feasible and has potential applications in the production of precision machinery.

Stress Analysis of a Clamp Chuck for Machining of a Ring Gear (링기어 절삭을 위한 클램프 척의 응력해석)

  • Sim, Han-Sub;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.73-78
    • /
    • 2011
  • This study contains to theory and analysis research for the stress and the translation of an expand disk that fix a ring gear for tooth profile machining. The stress of the expand disk is analysed by the finite element method(FEM) to calculate design parameters. From the analysis results, the stress of the expand shows a linear tendency under various fixing force. This results show that the expand disk have a elastic characteristics as a disk spring. The maximum stress was observed on under side in split section of the expand disk. It is verified that the analysis results are useful to calculate design parameters of the expand disk.

Study on Effect of Micro Tooth Shape Modification on Power Transmission Characteristics based on the Driving Gear of Rotating Machining Unit (마이크로 치형수정이 선회가공 유닛 구동기어의 동력전달 특성에 미치는 영향에 관한 연구)

  • Jang, Jeong-Hwan;Qin, Zhen;Kim, Dong-Seon;Wu, Yu-Ting;Lyu, Sung Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.91-97
    • /
    • 2019
  • Rotating machining unit is a revolutionary product that can process worm shaft or spiral shaft with fast and precise, a rotary type cutting tool, which is attached to automatic lathe and processes spiral groove on outer circumference of round bar. In this work, a study on micro tooth shape modification method of driving gear train in the rotating machining unit was presented. To observe the effect on power transmission characteristics of the driving gear pair, visualize the gear meshing condition and the load distribution on the gear teeth by using the professional gear train analysis program RomaxDesigner. By comparing the repeated analysis results, the effect of micro tooth shape modification on power transmission characteristics on driving gear can be summarized. The optimized gears were fabricated and measured by precision tester as a validation in this research.

Development of the Sub Gear for the Scissors Gear System for Automobile Engines

  • Nakazawa, Katsuhito;Nagata, Toshihiko;Motooka, Naoki
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.756-757
    • /
    • 2006
  • P/M enables the economical production of components for many kinds of gears. Functionally, the sub gear requires high tooth accuracy and bending fatigue strength. The whole tooth profile was sized after sintering to satisfy the gear tooth accuracy specification. The part was redesigned to reduce machining requirements. The required bending fatigue strength was achieved through appropriate material choice and induction of compressive residual stress by shotpeening after carburizing. The P/M sub gear replaced a forged steel gear, satisfied performance requirements, expanded the use of P/M applications and provided over 30% cost reduction.

  • PDF

Transmission Error Analysis of ZI and ZA Profile Worm Gears (ZI 및 ZA형 웜기어의 치합전달오차 해석)

  • Lee, Tae-Hoon;Suh, Junho;Park, Noh-Gill
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.325-331
    • /
    • 2018
  • Automobiles and systems requiring high gear ratios and high power densities generally use worm gears. In particular, as worm gears have a small volume and self-locking function, home appliances such as refrigerators and washers consist of worm gears. We can classify worm gears into cylindrical worms and rectangular worms. According to the AGMA standard, there are four types of cylindrical worms, ZA, ZN, ZK and ZI, depending on the machining of the worm shaft. It is preferable to use a ZI-type worm shaft, which is a combination of a worm wheel having an involute helical tooth surface and a conjugate tooth surface. However, in many cases, industries mostly use ZK, ZN, and ZA worm shafts because of the ease of processing. This paper presents numerical approaches to produce ZI and ZA worm surfaces and worm wheel. For the analysis of the transmission error of a worm gear system, this study (1) generates surface profile functions of ZI profile worm gear and worm shaft based on the common rack theory, (2) adopts the Newton-Raphson method for the analysis of the gear surface contact condition, and (3) presents and compares the corresponding transmission errors of ZI and ZA worm gears.

3D Printing Characteristics of Reverse Idle Gears for Tractor Transmissions (트랙터 트랜스미션용 후진 아이들 기어의 3D 프린팅 특성)

  • Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.1-8
    • /
    • 2017
  • This paper concerns the possibility of 3D printing reverse idle gears for tractor transmission. For the purposes of this experiment, idle gears were manufactured using a SLA 3D printer, FDM 3D printer, and through machining. The accuracy of the idle gears produced in these three different ways were evaluated by the properties of their outer diameter, inner diameter, roundness, concentricity, parallelism, span, backlash, and gear grade. The tooth characteristics of the idle gears were evaluated by their profile, lead, and the pitch of the gears. The results of this experiment determined that the surface conditions created by the finishing process had a significant impact on the dimensional accuracy of the gears and the characteristics of their teeth.

Design of Fly-Cutter for Antisymmetric Screw Rotor (비대칭형 스크류 로터용 플라이커터의 치형설계에 대한 연구)

  • Choi, Sang-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.45-52
    • /
    • 1997
  • In this study, we designed tooth profile of the fly-cutter for antisymmetric rotor which is used in screw compressor. In order to verify this profile, we manufactured three different pairs(J46, N46, P46) of antisymmetric rotor using fly-cutter. We got the following conclusions from this study. (1) We obtained better contact condition using 3pairs of rotor which are manufactured by the fly-cutter. (2) We could prevent the cutter interference near bottom point of the robe of screw rotor.